Abstract
Malaria is still a health problem in the world and in Indonesia in particular. Malaria vector control is an important strategy in efforts to control and eliminate malaria because it is very effective in preventing infection and reducing disease transmission. The CRISPR/Casnuclease system is a potent new genome editing system and tool for species-specific diagnosis, drug resistance research for Plasmodium species, and gene driver for Anopheles population control, according to an assessment of earlier genome editimg techniques. This Anopheles mosquito CRISPR/Cas9 technique on plasmodium has been applied in research to detect malaria parasites by inhibiting their growth throughout the life cycle, allowing evaluation of the effectiveness of antimalarial drugs or vaccines at various stages of the parasite life cycle. In addition, CRISPR/Cas9 in Anopheles mosquitoes allows identification and double-strand breaks in target DNA, which can then be modified through genome changes. So, with the development of gene editing technology, the spread of Anopheles mosquitoes can be controlled and reduced.
Full text article
References
Arisandi, D., Sohy, S. R., & Nadifah, F. (2016). Identification of Malaria Parasites in Chasan Boesoirie General Hospital Ternate East Nusa Tenggara. Journal of Health, 3(1), 39. https://doi.org/10.30590/vol3-no1- p39-44
Bin Said, I., Kouakou, Y. I., Omorou, R., Bienvenu, A.-L., Ahmed, K., Culleton, R., & Picot, S. (2022). Systematic review of Plasmodium knowlesi in Indonesia: A risk of emergence in the context of capital relocation to Borneo? Parasites & Vectors, 15(1), 258. https://doi.org/10.1186/s13071-022- 05375-8
Bryant, J. M., Regnault, C., Scheidig- Benatar, C., Baumgarten, S., Guizetti, J., & Scherf, A. (2017). CRISPR/Cas9 Genome Editing Reveals That the Intron Is Not Essential for var2csa Gene Activation or Silencing in Plasmodium falciparum. mBio, 8(4), e00729- 17. https://doi.org/10.1128/mBio.00729- 17
Crawford, E. D., Quan, J., Horst, J. A., Ebert, D., Wu, W., & DeRisi, J. L. (2017). Plasmid- free CRISPR/Cas9 genome editing in Plasmodium falciparum confirms mutations conferring resistance to the dihydroisoquinolone clinical candidate SJ733. PLOS ONE, 12(5), e0178163. https://doi.org/10.1371/journal.pone. 0178163
Domingos, A., Pinheiro?Silva, R., Couto, J., Do Rosário, V., & De La Fuente, J. (2017). The Anopheles gambiae transcriptome – a turning point for malaria control. Insect Molecular Biology, 26(2), 140–151. https://doi.org/10.1111/imb.12289
Gantz, V. M., Jasinskiene, N., Tatarenkova, O., Fazekas, A., Macias, V. M., Bier, E., & James, A. A. (2015). Highly efficient Cas9- mediated gene drive for population modification of the malaria vector mosquito Anopheles stephensi. Proceedings of the National Academy of Sciences, 112(49). https://doi.org/10.1073/pnas.152107 7112
Garrido-Cardenas, J. A., González-Cerón, L., Manzano-Agugliaro, F., & Mesa-Valle, C. (2019). Plasmodium genomics: An approach for learning about and ending human malaria. Parasitology Research, 118(1), 1–27. https://doi.org/10.1007/s00436-018- 6127-9
Geography and social distribution of malaria in Indonesian Papua: A cross-sectional study—PMC. (n.d.). Retrieved March 16, 2024, from https://www.ncbi.nlm.nih.gov/pmc/a rticles/PMC4830039/
Hammond, A., Galizi, R., Kyrou, K., Simoni, A., Siniscalchi, C., Katsanos, D., Gribble, M., Baker, D., Marois, E., Russell, S., Burt, A., Windbichler, N., Crisanti, A., & Nolan, T. (2016). A CRISPR-Cas9 gene drive system targeting female reproduction in the malaria mosquito vector Anopheles gambiae. Nature Biotechnology, 34(1), 78–83. https://doi.org/10.1038/nbt.3439
Harding, C. R., & Meissner, M. (2014). The inner membrane complex through development of T oxoplasma gondii and P lasmodium: The IMC in Plasmodium and Toxoplasma. Cellular Microbiology, 16(5), 632–641. https://doi.org/10.1111/cmi.12285
Keman, S. (n.d.). PERUBAHAN IKLIM GLOBAL, KESEHATAN MANUSIA DAN PEMBANGUNAN BERKELANJUTAN.
Kilian, A., Obi, E., Mansiangi, P., Abílio, A. P., Haji, K. A., Blaufuss, S., Olapeju, B., Babalola, S., & Koenker, H. (2021). Variation of physical durability between LLIN products and net use environments: Summary of findings from four African countries. Malaria Journal, 20(1), 26. https://doi.org/10.1186/s12936-020- 03549-2
Kotepui, M., Kotepui, K. U., De Jesus Milanez, G., & Masangkay, F. R. (2020). Plasmodium spp. mixed infection leading to severe malaria: A systematic review and meta- analysis. Scientific Reports, 10(1), 11068. https://doi.org/10.1038/s41598-020- 68082-3
Langhorne, J., Ndungu, F. M., Sponaas, A.- M., & Marsh, K. (2008). Immunity to malaria: More questions than answers. Nature Immunology, 9(7), 725– 732. https://doi.org/10.1038/ni.f.205
Li, M., Akbari, O. S., & White, B. J. (n.d.). Highly Ef?cient Site-Speci?c Mutagenesis in Malaria Mosquitoes Using CRISPR.
Matthews, J., Bethel, A., & Osei, G. (2020). An overview of malarial Anopheles mosquito survival estimates in relation to methodology. Parasites & Vectors, 13(1), 233. https://doi.org/10.1186/s13071-020- 04092-4
Miller, J. C., Tan, S., Qiao, G., Barlow, K. A., Wang, J., Xia, D. F., Meng, X., Paschon, D. E., Leung, E., Hinkley, S. J., Dulay, G. P., Hua, K. L., Ankoudinova, I., Cost, G. J., Urnov, F. D., Zhang, H. S., Holmes, M. C., Zhang, L., Gregory, P. D., & Rebar, E. J. (2011). A TALE nuclease architecture for efficient genome editing. Nature Biotechnology, 29(2), 143– 148. https://doi.org/10.1038/nbt.1755
Naik, D. G. (2020). Plasmodium knowlesi- mediated zoonotic malaria: A challenge for elimination. Tropical Parasitology, 10(1), 3–6. https://doi.org/10.4103/tp.TP_17_18
Nolan, T. (2020). Control of malaria- transmitting mosquitoes using gene drives. Philosophical Transactions of the Royal Society B: Biological Sciences, 376(1818), 20190803. https://doi.org/10.1098/rstb.2019.08 03
North, A. R., Burt, A., & Godfray, H. C. J. (2020). Modelling the suppression of a malaria vector using a CRISPR-Cas9 gene drive to reduce female fertility. BMC Biology, 18(1), 98. https://doi.org/10.1186/s12915-020- 00834-z
Nourani, L., Mehrizi, A. A., Pirahmadi, S., Pourhashem, Z., Asadollahi, E., & Jahangiri, B. (2023). CRISPR/Cas advancements for genome editing, diagnosis, therapeutics, and vaccine development for Plasmodium parasites, and genetic engineering of Anopheles mosquito vector. Infection, Genetics and Evolution, 109, 105419. https://doi.org/10.1016/j.meegid.202 3.105419
Oringanje, C., Delacruz, L. R., Han, Y., Luckhart, S., & Riehle, M. A. (2021). Overexpression of Activated AMPK in the Anopheles stephensi Midgut Impacts Mosquito Metabolism, Reproduction and Plasmodium Resistance. Genes, 12(1), 119. https://doi.org/10.3390/genes120101 19
Sebanyak 94.610 Kasus Malaria Terjadi di Indonesia pada 2021. (n.d.). Retrieved March 16, 2024, from https://databoks.katadata.co.id/datap ublish/2021/12/20/sebanyak- 94610-kasus- malaria-terjadi-di- indonesia-pada- 2021
Wamaket, N., Khamprapa, O., Chainarin, S., Thamsawet, P., Ninsaeng, U., Thongsalee, S., Suwan, V., Sakolvaree, J., Takhampunya, R., Davidson, S. A., McCardle, P. W., Sa- angchai, P., Mukaka, M., Kiattibutr, K., Khamsiriwatchara, A., Nguitragool, W., Sattabongkot, J., Sirichaisinthop, J., & Kobylinski, K. C. (2021). Anopheles bionomics in a malaria endemic area of southern Thailand. Parasites & Vectors, 14(1), 378. https://doi.org/10.1186/s13071- 021- 04870-8
Zhang, C., Xiao, B., Jiang, Y., Zhao, Y., Li, Z., Gao, H., Ling, Y., Wei, J., Li, S., Lu, M., Su, X., Cui, H., & Yuan, J. (2014). Efficient Editing of Malaria Parasite Genome Using the CRISPR/Cas9 System. mBio, 5(4), e01414-14. https://doi.org/10.1128/mBio.01414- 14
Authors
Copyright (c) 2024 Nur'Afni Maulina Maghfiro, Lidiya Fatmaningsih, Maulidatul Aulia, Ibrahim Bin Sa’id

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.