Development of Machine Learning Algorithms for Anomaly Detection in Internet of Things (IoT) Networks
Abstract
The proliferation of Internet of Things (IoT) devices has increased the vulnerability of networks to security threats, making anomaly detection essential for maintaining system integrity. Traditional security measures often fall short in identifying and mitigating complex attack patterns that can jeopardize IoT networks. This research aims to develop a machine learning algorithm specifically designed for anomaly detection in IoT environments. The goal is to enhance the ability to identify unusual behavior indicative of potential security breaches while minimizing false positives. A dataset comprising network traffic from various IoT devices was collected and preprocessed to extract relevant features. Several machine learning algorithms, including decision trees, support vector machines, and neural networks, were implemented and evaluated. Performance metrics such as accuracy, precision, recall, and F1-score were used to assess the effectiveness of each model. The results indicated that the proposed machine learning algorithm outperformed traditional methods, achieving an accuracy of 95% in detecting anomalies. The model demonstrated a significant reduction in false positives compared to existing techniques, thereby enhancing the reliability of anomaly detection in IoT networks. The research concludes that the developed machine learning algorithm is a robust solution for detecting anomalies in IoT environments. This advancement contributes to the field by providing an effective tool for improving security measures in the rapidly evolving landscape of IoT. Future work should focus on real-time implementation and further optimization of the algorithm to adapt to dynamic network conditions.
Full text article
References
Abdellatief, M., Hassan, Y. M., Elnabwy, M. T., Wong, L. S., Chin, R. J., & Mo, K. H. (2024). Investigation of machine learning models in predicting compressive strength for ultra-high-performance geopolymer concrete: A comparative study. Construction and Building Materials, 436, 136884. https://doi.org/10.1016/j.conbuildmat.2024.136884
Adil, M., Song, H., Mastorakis, S., Abulkasim, H., Farouk, A., & Jin, Z. (2024). UAV-Assisted IoT Applications, Cybersecurity Threats, AI-Enabled Solutions, Open Challenges With Future Research Directions. IEEE Transactions on Intelligent Vehicles, 9(4), 4583–4605. https://doi.org/10.1109/TIV.2023.3309548
Agarwal, V., Singh, M., & Prathap, B. R. (2024). Enhanced Multi-Model Approach for Motion and Violence Detection using Deep Learning Methods Using Open World Video Game Dataset. 2024 First International Conference on Pioneering Developments in Computer Science & Digital Technologies (IC2SDT), 1–6. https://doi.org/10.1109/IC2SDT62152.2024.10696130
Alahi, M. E. E., Sukkuea, A., Tina, F. W., Nag, A., Kurdthongmee, W., Suwannarat, K., & Mukhopadhyay, S. C. (2023). Integration of IoT-Enabled Technologies and Artificial Intelligence (AI) for Smart City Scenario: Recent Advancements and Future Trends. Sensors, 23(11), 5206. https://doi.org/10.3390/s23115206
Alcock, B. P., Huynh, W., Chalil, R., Smith, K. W., Raphenya, A. R., Wlodarski, M. A., Edalatmand, A., Petkau, A., Syed, S. A., Tsang, K. K., Baker, S. J. C., Dave, M., McCarthy, M. C., Mukiri, K. M., Nasir, J. A., Golbon, B., Imtiaz, H., Jiang, X., Kaur, K., … McArthur, A. G. (2023). CARD 2023: Expanded curation, support for machine learning, and resistome prediction at the Comprehensive Antibiotic Resistance Database. Nucleic Acids Research, 51(D1), D690–D699. https://doi.org/10.1093/nar/gkac920
Asgharzadeh, H., Ghaffari, A., Masdari, M., & Soleimanian Gharehchopogh, F. (2023). Anomaly-based intrusion detection system in the Internet of Things using a convolutional neural network and multi-objective enhanced Capuchin Search Algorithm. Journal of Parallel and Distributed Computing, 175, 1–21. https://doi.org/10.1016/j.jpdc.2022.12.009
Bacha, S., Aljuhani, A., Abdellafou, K. B., Taouali, O., Liouane, N., & Alazab, M. (2024). Anomaly-based intrusion detection system in IoT using kernel extreme learning machine. Journal of Ambient Intelligence and Humanized Computing, 15(1), 231–242. https://doi.org/10.1007/s12652-022-03887-w
B.D., D., & Al-Turjman, F. (2020). A hybrid secure routing and monitoring mechanism in IoT-based wireless sensor networks. Ad Hoc Networks, 97, 102022. https://doi.org/10.1016/j.adhoc.2019.102022
Bezanjani, B. R., Ghafouri, S. H., & Gholamrezaei, R. (2024). Fusion of machine learning and blockchain-based privacy-preserving approach for healthcare data in the Internet of Things. The Journal of Supercomputing, 80(17), 24975–25003. https://doi.org/10.1007/s11227-024-06392-3
Choubisa, M. (2024). IoT Devices. In S. Dalal, N. Dahiya, V. Jaglan, D. Koundal, & D. Le (Eds.), Reshaping Intelligent Business and Industry (1st ed., pp. 141–156). Wiley. https://doi.org/10.1002/9781119905202.ch9
Gao, M., Wu, L., Li, Q., & Chen, W. (2023). Anomaly traffic detection in IoT security using graph neural networks. Journal of Information Security and Applications, 76, 103532. https://doi.org/10.1016/j.jisa.2023.103532
Gerodimos, A., Maglaras, L., Ferrag, M. A., Ayres, N., & Kantzavelou, I. (2023). IoT: Communication protocols and security threats. Internet of Things and Cyber-Physical Systems, 3, 1–13. https://doi.org/10.1016/j.iotcps.2022.12.003
Gupta, A., & Simon, R. (2024). Enhancing Security in Cloud Computing With Anomaly Detection Using Random Forest. 2024 11th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO), 1–6. https://doi.org/10.1109/ICRITO61523.2024.10522227
Gurram, G. V., Shariff, N. C., & Biradar, R. L. (2022). A Secure Energy Aware Meta-Heuristic Routing Protocol (SEAMHR) for sustainable IoT-Wireless Sensor Network (WSN). Theoretical Computer Science, 930, 63–76. https://doi.org/10.1016/j.tcs.2022.07.011
Imran, Zuhairi, M. F., Ali, S. M., Shahid, Z., Alam, M. M., & Su’ud, M. M. (2024). Realtime Feature Engineering for Anomaly Detection in IoT Based MQTT Networks. IEEE Access, 12, 25700–25718. https://doi.org/10.1109/ACCESS.2024.3363889
Inuwa, M. M., & Das, R. (2024). A comparative analysis of various machine learning methods for anomaly detection in cyber attacks on IoT networks. Internet of Things, 26, 101162. https://doi.org/10.1016/j.iot.2024.101162
Irfan, B. Md., Poornima, V., Mohana Kumar, S., Aswal, U. S., Krishnamoorthy, N., & Maranan, R. (2023). Machine Learning Algorithms for Intrusion Detection Performance Evaluation and Comparative Analysis. 2023 4th International Conference on Smart Electronics and Communication (ICOSEC), 01–05. https://doi.org/10.1109/ICOSEC58147.2023.10275831
Jami Pour, M., Hosseinzadeh, M., & Moradi, M. (2024). IoT-based entrepreneurial opportunities in smart transportation: A multidimensional framework. International Journal of Entrepreneurial Behavior & Research, 30(2/3), 450–481. https://doi.org/10.1108/IJEBR-06-2022-0574
Kaur, B., Dadkhah, S., Shoeleh, F., Neto, E. C. P., Xiong, P., Iqbal, S., Lamontagne, P., Ray, S., & Ghorbani, A. A. (2023). Internet of Things (IoT) security dataset evolution: Challenges and future directions. Internet of Things, 22, 100780. https://doi.org/10.1016/j.iot.2023.100780
Li, Y., Sun, X., Yang, R., Sun, X., Chen, S., Wang, S., Bhuiyan, M. Z. A., Zomaya, A. Y., & Xu, J. (2024). GNNRI: Detecting anomalous social network users through heterogeneous information networks and user relevance exploration. International Journal of Machine Learning and Cybernetics. https://doi.org/10.1007/s13042-024-02392-0
Lu, K.-D., Wu, Z.-G., & Huang, T. (2023). Differential Evolution-Based Three Stage Dynamic Cyber-Attack of Cyber-Physical Power Systems. IEEE/ASME Transactions on Mechatronics, 28(2), 1137–1148. https://doi.org/10.1109/TMECH.2022.3214314
Ma, H., Zeng, J., Zhang, X., Peng, J., Li, X., Fu, P., Cosh, M. H., Letu, H., Wang, S., Chen, N., & Wigneron, J.-P. (2024). Surface soil moisture from combined active and passive microwave observations: Integrating ASCAT and SMAP observations based on machine learning approaches. Remote Sensing of Environment, 308, 114197. https://doi.org/10.1016/j.rse.2024.114197
McNulty, L., & Vassilakis, V. G. (2022). IoT Botnets: Characteristics, Exploits, Attack Capabilities, and Targets. 2022 13th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP), 350–355. https://doi.org/10.1109/CSNDSP54353.2022.9908039
Mishra, N., & Pandya, S. (2021). Internet of Things Applications, Security Challenges, Attacks, Intrusion Detection, and Future Visions: A Systematic Review. IEEE Access, 9, 59353–59377. https://doi.org/10.1109/ACCESS.2021.3073408
Nguyen, M.-D., La, V. H., Cavalli, R., & De Oca, E. M. (2022). Towards improving explainability, resilience and performance of cybersecurity analysis of 5G/IoT networks (work-in-progress paper). 2022 IEEE International Conference on Software Testing, Verification and Validation Workshops (ICSTW), 7–10. https://doi.org/10.1109/ICSTW55395.2022.00016
Oruganti, R. K., Biji, A. P., Lanuyanger, T., Show, P. L., Sriariyanun, M., Upadhyayula, V. K. K., Gadhamshetty, V., & Bhattacharyya, D. (2023). Artificial intelligence and machine learning tools for high-performance microalgal wastewater treatment and algal biorefinery: A critical review. Science of The Total Environment, 876, 162797. https://doi.org/10.1016/j.scitotenv.2023.162797
Priya, S., Tripathi, G., Singh, D. B., Jain, P., & Kumar, A. (2022). Machine learning approaches and their applications in drug discovery and design. Chemical Biology & Drug Design, 100(1), 136–153. https://doi.org/10.1111/cbdd.14057
Raju, V. S. A., & B, S. (2023). Network Intrusion Detection for IoT-Botnet Attacks Using ML Algorithms. 2023 7th International Conference on Computation System and Information Technology for Sustainable Solutions (CSITSS), 1–6. https://doi.org/10.1109/CSITSS60515.2023.10334188
Rani, S. (2024). Emerging Technologies and the Application of WSN and IoT: Smart Surveillance, Public Security, and Safety Challenges (1st ed.). CRC Press. https://doi.org/10.1201/9781003438205
Rbah, Y., Mahfoudi, M., Balboul, Y., Chetioui, K., Fattah, M., Mazer, S., Elbekkali, M., & Bernoussi, B. (2024). Hybrid software defined network-based deep learning framework for enhancing internet of medical things cybersecurity. IAES International Journal of Artificial Intelligence (IJ-AI), 13(3), 3599. https://doi.org/10.11591/ijai.v13.i3.pp3599-3610
Sana, L., Nazir, M. M., Yang, J., Hussain, L., Chen, Y.-L., Ku, C. S., Alatiyyah, M., Alateyah, S. A., & Por, L. Y. (2024). Securing the IoT Cyber Environment: Enhancing Intrusion Anomaly Detection With Vision Transformers. IEEE Access, 12, 82443–82468. https://doi.org/10.1109/ACCESS.2024.3404778
Stavrinides, G. L., & Karatza, H. D. (2024). Security, Cost and Energy Aware Scheduling of Real-Time IoT Workflows in a Mist Computing Environment. Information Systems Frontiers, 26(4), 1223–1241. https://doi.org/10.1007/s10796-022-10304-2
Swarnkar, M., & Rajput, S. S. (Eds.). (2024). Artificial intelligence for intrusion detection systems (First edition). CRC Press.
Tariq, U., Ahmed, I., Bashir, A. K., & Shaukat, K. (2023). A Critical Cybersecurity Analysis and Future Research Directions for the Internet of Things: A Comprehensive Review. Sensors, 23(8), 4117. https://doi.org/10.3390/s23084117
Tawfeek, Z. S., Al-Hamami, A. H., Alshami, A. L., & Stephan, J. J. (2024). Implementing machine learning in cyber security-based IoT for botnets security detection by applying recurrent variational autoencoder. 060004. https://doi.org/10.1063/5.0234381
Thai, H.-T. (2022). Machine learning for structural engineering: A state-of-the-art review. Structures, 38, 448–491. https://doi.org/10.1016/j.istruc.2022.02.003
Vetrivel, S. C., Maheswari, R., & Saravanan, T. P. (2024). Industrial IOT: Security Threats and Counter Measures. In A. Prasad, T. P. Singh, & S. Dwivedi Sharma (Eds.), Communication Technologies and Security Challenges in IoT (pp. 403–425). Springer Nature Singapore. https://doi.org/10.1007/978-981-97-0052-3_20
Wani, A., S, R., & Khaliq, R. (2021). SDN?based intrusion detection system for IoT using deep learning classifier (IDSIoT?SDL). CAAI Transactions on Intelligence Technology, 6(3), 281–290. https://doi.org/10.1049/cit2.12003
Yadav, R. K., & Awasthi, N. (2020). A Route Stable Energy and Mobility aware routing protocol for IoT. 2020 Second International Conference on Inventive Research in Computing Applications (ICIRCA), 942–948. https://doi.org/10.1109/ICIRCA48905.2020.9183226
Yeruva, A. R., Chaturvedi, P., Rao, A. L. N., DimriL, S. C., Shekar, C., & Yirga, B. (2022). Anomaly Detection System using ML Classification Algorithm for Network Security. 2022 5th International Conference on Contemporary Computing and Informatics (IC3I), 1416–1422. https://doi.org/10.1109/IC3I56241.2022.10072303
Authors
Copyright (c) 2024 Vicheka Rith, Vann Sok, Arnes Yuli Vandika

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.