Development of Artificial Intelligence-Based Robots for Rescue Tasks at Disaster Locations
Abstract
The increasing frequency of natural disasters highlights the urgent need for efficient rescue operations. Traditional methods often face limitations in accessing hazardous areas, making the development of intelligent robotic systems essential for enhancing rescue efforts. This research focuses on creating an AI-based robot specifically designed for search and rescue tasks in disaster-stricken locations. The primary aim of this study is to develop a robotic system that utilizes artificial intelligence to navigate complex environments, identify survivors, and deliver essential supplies. The research seeks to evaluate the robot's effectiveness in real-world scenarios and its potential to improve response times during emergencies. A systematic approach was employed, combining hardware design and software development. The robot was equipped with advanced sensors, machine learning algorithms, and autonomous navigation capabilities. Field tests were conducted in simulated disaster environments to assess the robot's performance in detecting obstacles, locating victims, and executing rescue tasks. The AI-based robot demonstrated a 90% success rate in locating simulated survivors and effectively navigating through obstacles. Response times were significantly reduced compared to traditional methods, showcasing the robot's potential to enhance rescue operations in real emergencies. This research successfully developed an AI-driven robotic system for search and rescue tasks, demonstrating its effectiveness in improving operational efficiency.
Full text article
References
Abaunza, H., Castillo, P., & Drakunov, S. V. (2024). Quadrotor Fleet Autonomous Navigation: Fusing Virtual Points Control and Nonlinear Potential Fields. IEEE Transactions on Control Systems Technology. Scopus. https://doi.org/10.1109/TCST.2024.3517232
Adel, A. (2024). The Convergence of Intelligent Tutoring, Robotics, and IoT in Smart Education for the Transition from Industry 4.0 to 5.0. Smart Cities, 7(1), 325–369. Scopus. https://doi.org/10.3390/smartcities7010014
Alexandris, C., Papageorgas, P., & Piromalis, D. (2024). Positioning Systems for Unmanned Underwater Vehicles: A Comprehensive Review. Applied Sciences (Switzerland), 14(21). Scopus. https://doi.org/10.3390/app14219671
AlShabi, M., Ballous, K. A., Nassif, A. B., Bettayeb, M., Obaideen, K., & Gadsden, S. A. (2024). Path Planning for a UGV using Salp Swarm Algorithm. In Dudzik M.C., Jameson S.M., & Axenson T.J. (Eds.), Proc SPIE Int Soc Opt Eng (Vol. 13052). SPIE; Scopus. https://doi.org/10.1117/12.3013930
Banik, S., Kim, J., Hovakimyan, N., Carlone, L., Thomas, J. P., & Leveson, N. G. (2025). Integrating Vision Systems and STPA for Robust Landing and Take-Off in VTOL Aircraft. AIAA Sci. Technol. Forum Expos. AIAA Science and Technology Forum and Exposition, AIAA SciTech Forum 2025. Scopus. https://doi.org/10.2514/6.2025-1324
Beloev, I., Kinaneva, D., Georgiev, G., Hristov, G., & Zahariev, P. (2021). Artificial Intelligence-Driven Autonomous Robot for Precision Agriculture. Acta Technologica Agriculturae, 24(1), 48–54. https://doi.org/10.2478/ata-2021-0008
Boiteau, S., Vanegas, F., & Gonzalez, F. (2024). Framework for Autonomous UAV Navigation and Target Detection in Global-Navigation-Satellite-System-Denied and Visually Degraded Environments. Remote Sensing, 16(3). Scopus. https://doi.org/10.3390/rs16030471
Brad, S., & Balog, B. (2025). Integrated Rover Path Planning and Validation on Real Outdoor Terrain Scenarios Using Satellite Information to Conduct a Real Achievable Trajectory. Electronics (Switzerland), 14(5). Scopus. https://doi.org/10.3390/electronics14050921
Chang, E. Y.-W., & Chern, R. J.-S. (2024). Swarm Robotics: A New Paradigm in Robotic Space Exploration. Proc. Int. Astronaut. Congr., IAC, 1A, 29–31. Scopus. https://doi.org/10.52202/078357-0005
Chatterjee, S., Das, S., Ganguly, K., & Mandal, D. (2024). Advancements in robotic surgery: Innovations, challenges and future prospects. Journal of Robotic Surgery, 18(1), 28. https://doi.org/10.1007/s11701-023-01801-w
Chen, E., Ho, C., Maulimov, M., Wang, C., & Scherer, S. (2024). Learning-on-the-Drive: Self-supervised Adaptive Long-range Perception for High-speed Offroad Driving. IEEE Int Conf Intell Rob Syst, 9588–9595. Scopus. https://doi.org/10.1109/IROS58592.2024.10801365
Chen, L., Wang, Y., Miao, Z., Feng, M., Wang, Y., Mo, Y., He, W., Wang, H., & Wang, D. (2025). STR: Spatial-Temporal RetNet for Distributed Multi-Robot Navigation. IEEE Transactions on Automation Science and Engineering, 22, 10429–10441. Scopus. https://doi.org/10.1109/TASE.2024.3524000
Chitikena, H., Sanfilippo, F., & Ma, S. (2023). Robotics in Search and Rescue (SAR) Operations: An Ethical and Design Perspective Framework for Response Phase. Applied Sciences, 13(3), 1800. https://doi.org/10.3390/app13031800
Danielis, P., Brekenfelder, W., Parzyjegla, H., Ghoghar, P., Stube, P., & Sill Torres, F. (2024). Integrated Autonomous Underwater Vehicle Path Planning and Collision Avoidance Algorithms. Transactions on Maritime Science, 13(1). Scopus. https://doi.org/10.7225/toms.v13.n01.003
El-Alfy, K. A., Alathbah, M., Taher, F., Alghamdi, T., & Abo Sree, M. F. (2024). Innovative Quadcopter Fabrication Techniques and Versatile Applications: Unlocking Boundless Possibilities. Int. Telecommun. Conf., ITC-Egypt, 830–835. Scopus. https://doi.org/10.1109/ITC-Egypt61547.2024.10620455
Fang, Z., Wei, J., & Savkin, A. V. (2025). Navigation of a Team of Collaborating UAVs and UGVs for Bushfire Surveillance and People Evacuating on Uneven Mountainous Terrains. Guidance, Navigation and Control. Scopus. https://doi.org/10.1142/S2737480725500116
Guerra, A., Guidi, F., Dardari, D., & Djuric, P. M. (2024). Reinforcement Learning for Joint Detection and Mapping Using Dynamic UAV Networks. IEEE Transactions on Aerospace and Electronic Systems, 60(3), 2586–2601. Scopus. https://doi.org/10.1109/TAES.2023.3300813
Kartika Aji, A. A., Sebastian, M., Alexander, F., Tsai, P.-T., & Lee, M.-F. R. (2024). State Estimation for Autonomous Surface Vehicles: A Neural Network-Assisted Observer Approach. Int. Conf. Adv. Robot. Intell. Syst., ARIS. International Conference on Advanced Robotics and Intelligent Systems, ARIS. Scopus. https://doi.org/10.1109/ARIS62416.2024.10680006
Khor, P. W., Ooi, J. J., Lim, C. H., & Tan, Y. C. (2023). Design and development of latex cup collector robot. IOP Conference Series: Earth and Environmental Science, 1281(1), 012074. https://doi.org/10.1088/1755-1315/1281/1/012074
Kim, A. (2024). Lifeguard UAV System: Scout Quadcopter and Rescue Coaxial Hexacopter with In-Arm Pitch Axis for Extended and Symmetric Dual-Axis Tilt Rotor. IEEE Int. Conf. Autom. Control Intell. Syst., I2CACIS - Proc., 83–88. Scopus. https://doi.org/10.1109/I2CACIS61270.2024.10649858
Legeza, V., & Oleshchenko, L. (2025). Simulation of Fugitive Interception Strategies for a Mobile Object on a Surface in a Vector Field of Moving Fluid. In Lecture. Notes. Data Eng. Commun. Tech. (Vol. 242, pp. 75–85). Springer Science and Business Media Deutschland GmbH; Scopus. https://doi.org/10.1007/978-3-031-84228-3_7
Lei, Y., Hou, J., Ma, P., & Ma, M. (2025). Voronoi-GRU-Based Multi-Robot Collaborative Exploration in Unknown Environments. Applied Sciences (Switzerland), 15(6). Scopus. https://doi.org/10.3390/app15063313
Lin, T.-H., Putranto, A., Chen, P.-H., Teng, Y.-Z., & Chen, L. (2023). High-mobility inchworm climbing robot for steel bridge inspection. Automation in Construction, 152, 104905. https://doi.org/10.1016/j.autcon.2023.104905
Liu, Q., Huang, D., Liu, Z., & Wang, H. (2025). Memorize My Movement: Efficient Sensorimotor Navigation With Self-Motion-Based Spatial Cognition. IEEE Transactions on Automation Science and Engineering, 22, 10368–10380. Scopus. https://doi.org/10.1109/TASE.2024.3522665
Lou, S., Zhang, Y., Tan, R., & Lv, C. (2024). A human-cyber-physical system enabled sequential disassembly planning approach for a human-robot collaboration cell in Industry 5.0. Robotics and Computer-Integrated Manufacturing, 87, 102706. https://doi.org/10.1016/j.rcim.2023.102706
Micheal, A. A., & Sivaramakrishnan, S. (2024). Human Detection and Tracking for Drone based Marine Surveillance. Int. Conf. Comput. Commun. Netw. Technol., ICCCNT. 2024 15th International Conference on Computing Communication and Networking Technologies, ICCCNT 2024. Scopus. https://doi.org/10.1109/ICCCNT61001.2024.10723860
Moon, J., Hong, D., Kim, J., Kim, S., Woo, S., Choi, H., & Moon, C. (2024). Enhancing Autonomous Driving Robot Systems with Edge Computing and LDM Platforms. Electronics, 13(14), 2740. https://doi.org/10.3390/electronics13142740
Narendran, A., Hothri, A., Saga, H., & Sahay, A. (2024). MazeSolver: Exploring Algorithmic Solutions for Maze Navigation. Int. Conf. Comput. Commun. Netw. Technol., ICCCNT. 2024 15th International Conference on Computing Communication and Networking Technologies, ICCCNT 2024. Scopus. https://doi.org/10.1109/ICCCNT61001.2024.10725996
Nemoto, Y. (2024). Navigation safety of Maritime Autonomous Surface Ships. Australian Journal of Maritime and Ocean Affairs. Scopus. https://doi.org/10.1080/18366503.2024.2393480
Oleksii, S., Bu?inskas, V., & Dzedzickis, A. (2024). Positioning of Mobile Robots on the Ground. In Szewczyk R., Zieli?ski C., Kaliczy?ska M., & Bu?inskas V. (Eds.), Lect. Notes Networks Syst.: Vol. 1219 LNNS (pp. 162–175). Springer Science and Business Media Deutschland GmbH; Scopus. https://doi.org/10.1007/978-3-031-78266-4_15
Pratap, S., Narayan, J., Hatta, Y., Ito, K., & Hazarika, S. M. (2024). Glove-Net: Enhancing Grasp Classification with Multisensory Data and Deep Learning Approach. Sensors, 24(13), 4378. https://doi.org/10.3390/s24134378
Rahman, A., Banerjee, S., & Kundu, A. (2025). Path Planning in Disaster Management Scenarios. In Dhar S., Goswami S., Unni Krishnan D.K., Bose I., Dubey R., & Mazumdar C. (Eds.), Commun. Comput. Info. Sci.: Vol. 2224 CCIS (pp. 62–79). Springer Science and Business Media Deutschland GmbH; Scopus. https://doi.org/10.1007/978-3-031-75157-8_5
Schichler, L., Festl, K., & Solmaz, S. (2025). Robust Multi-Sensor Fusion for Localization in Hazardous Environments Using Thermal, LiDAR, and GNSS Data. Sensors, 25(7). Scopus. https://doi.org/10.3390/s25072032
Sellak, S., Alj, Y., & Salih-Alj, Y. (2024). Monocular Visual Odometry in Mobile Robot Navigation. ISIVC - Proc.: IEEE Int. Symp. Signal, Image, Video, Commun. ISIVC 2024 - Proceedings: 12th IEEE International Symposium on Signal, Image, Video, and Communications. Scopus. https://doi.org/10.1109/ISIVC61350.2024.10577766
Shah, I. A., Jhanjhi, N. Z., & Brohi, S. N. (2024). Use of AI-based drones in smart cities. In Cybersecur. Issues and challenges in the drone ind. (pp. 362–380). IGI Global; Scopus. https://doi.org/10.4018/979-8-3693-0774-8.ch015
Sharma, G., & Jain, S. (2024). Towards Autonomy in Unmanned Aerial Vehicle: Taxonomy and Applications. Proc. Int. Conf. Commun., Comput. Sci. Eng., IC3SE, 600–606. Scopus. https://doi.org/10.1109/IC3SE62002.2024.10593070
Shivaanivarsha, N., Vijayendiran, A. G., & Prasath, M. A. (2024). ’WAVECLEAN’—An Innovation in Autonomous Vessel Driving Using Object Tracking and Collection of Floating Debris. Int. Conf. Commun., Comput. Internet Things, IC3IoT - Proc. 2024 International Conference on Communication, Computing and Internet of Things, IC3IoT 2024 - Proceedings. Scopus. https://doi.org/10.1109/IC3IoT60841.2024.10550352
Shrestha, D., & Valles, D. (2024). Evolving Autonomous Navigation: A NEAT Approach for Firefighting Rover Operations in Dynamic Environments. IEEE Int. Conf. Electro Inform. Technol., 247–255. Scopus. https://doi.org/10.1109/eIT60633.2024.10609942
Solmaz, S., Innerwinkler, P., Wójcik, M., Tong, K., Politi, E., Dimitrakopoulos, G., Purucker, P., Höß, A., Schuller, B. W., & John, R. (2024). Robust Robotic Search and Rescue in Harsh Environments: An Example and Open Challenges. 2024 IEEE International Symposium on Robotic and Sensors Environments (ROSE), 1–8. https://doi.org/10.1109/ROSE62198.2024.10591144
Suanpang, P., & Jamjuntr, P. (2024). Optimizing Autonomous UAV Navigation with D* Algorithm for Sustainable Development. Sustainability (Switzerland), 16(17). Scopus. https://doi.org/10.3390/su16177867
Talla, A., & McIlwaine, S. (2024). Industry 4.0 and the circular economy: Using design-stage digital technology to reduce construction waste. Smart and Sustainable Built Environment, 13(1), 179–198. https://doi.org/10.1108/SASBE-03-2022-0050
Vélez-Guerrero, M. A., Callejas-Cuervo, M., & Mazzoleni, S. (2021). Design, Development, and Testing of an Intelligent Wearable Robotic Exoskeleton Prototype for Upper Limb Rehabilitation. Sensors, 21(16), 5411. https://doi.org/10.3390/s21165411
Venkatakrishnan, V. I., Axten, R., Valente, V. T., & Johnson, E. N. (2025). Versatile UAS Platform for Indoor Law Enforcement and First Responders Applications. AIAA Sci. Technol. Forum Expos. AIAA Science and Technology Forum and Exposition, AIAA SciTech Forum 2025. Scopus. https://doi.org/10.2514/6.2025-1899
Webster-Wood, V. A., Guix, M., Xu, N. W., Behkam, B., Sato, H., Sarkar, D., Sanchez, S., Shimizu, M., & Parker, K. K. (2023). Biohybrid robots: Recent progress, challenges, and perspectives. Bioinspiration & Biomimetics, 18(1), 015001. https://doi.org/10.1088/1748-3190/ac9c3b
Wei, H., Jiao, J., Hu, X., Yu, J., Xie, X., Wu, J., Zhu, Y., Liu, Y., Wang, L., & Liu, M. (2024). FusionPortableV2: A unified multi-sensor dataset for generalized SLAM across diverse platforms and scalable environments. International Journal of Robotics Research. Scopus. https://doi.org/10.1177/02783649241303525
Wu, T., Zhang, Z., Guo, L., Song, H., Xie, X., & Ren, S. (2024). A hybrid evolutionary algorithm for the stochastic human–robot collaborative disassembly line balancing problem considering carbon emission optimization. Engineering Applications of Artificial Intelligence, 135, 108703. https://doi.org/10.1016/j.engappai.2024.108703
Wu, T., Zhang, Z., Zeng, Y., & Zhang, Y. (2024). Mixed-integer programming model and hybrid local search genetic algorithm for human–robot collaborative disassembly line balancing problem. International Journal of Production Research, 62(5), 1758–1782. https://doi.org/10.1080/00207543.2023.2201352
Xiao, J., Zhang, N., Tortei, D., & Loianno, G. (2024). STHN: Deep Homography Estimation for UAV Thermal Geo-Localization With Satellite Imagery. IEEE Robotics and Automation Letters, 9(10), 8754–8761. Scopus. https://doi.org/10.1109/LRA.2024.3448129
Zhao, T., Guo, J., Xin, Y., & Wang, L. (2025). UAV UV Information Collection Method Based on Deep Reinforcement Learning. Guangzi Xuebao/Acta Photonica Sinica, 54(1). Scopus. https://doi.org/10.3788/gzxb20255401.0106003
Authors
Copyright (c) 2025 Achmad Nashrul Waahib, Iwan Ady Prabowo, Kusnadi Kusnadi, Antoni Pribadi

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.