Implementation of Haptic Control in a Robotics System for Remote Surgery

Togar Timoteus Gultom (1), Ajub Ajulian ZM (2), Siri Lek (3)
(1) Universitas Prima Indonesia, Indonesia,
(2) Universitas Diponegoro, Indonesia,
(3) Silpakorn University, Thailand

Abstract

The advancement of telemedicine and robotic surgery has led to increased interest in haptic feedback systems, which enhance the surgeon's ability to perform remote procedures. Haptic technology provides tactile sensations, allowing surgeons to feel the instruments' interactions with tissues, thus improving precision and control during surgery. This research aims to implement haptic feedback in robotic surgical systems, evaluating its impact on surgical performance and user experience during remote operations. The study seeks to determine whether incorporating haptic feedback can enhance the effectiveness and safety of robotic-assisted surgeries. A mixed-methods approach was employed, combining hardware development of a robotic surgical system with haptic feedback integration. Surgeons participated in controlled experiments to perform simulated surgical tasks with and without haptic feedback. Performance metrics, including task completion time, accuracy, and user satisfaction, were assessed. The implementation of haptic feedback resulted in a 30% reduction in task completion time and a 25% improvement in accuracy compared to non-haptic conditions. Surgeons reported higher satisfaction levels and increased confidence in performing procedures with the haptic-enabled system. The findings indicate that integrating haptic feedback into robotic surgical systems significantly enhances surgical performance and user experience. This research contributes to the growing body of knowledge in robotic surgery, demonstrating the potential of haptic technology to improve outcomes in remote surgical procedures.

Full text article

Generated from XML file

References

Abdeldaim, A. M., Abdelrahman, A. E., Ismail, M. M. H., El Haj Youssef, K., & Alkhedher, M. (2025). Automated Motion System of 5-DOF Hybrid Serial-Parallel Manipulator for Invasive Medical Procedures. Int. Conf. Intell. Control Inf. Process., ICICIP, 178–184. Scopus. https://doi.org/10.1109/ICICIP64458.2025.10898140

Aebischer, P., Sarbach, B., Weder, S., Mantokoudis, G., Caversaccio, M., & Anschuetz, L. (2025). Development and Evaluation of a Reusable, Force Measuring Tool for the Robot-Assisted Insertion of Cochlear Implant Electrode Arrays. IEEE Transactions on Biomedical Engineering, 72(1), 381–387. Scopus. https://doi.org/10.1109/TBME.2024.3386723

Amirpour, E., Savabi, M., Saboukhi, A., Gorji, M. R., Ghafarirad, H., Fesharakifard, R., & Rezaei, S. M. (2019). Design and Optimization of a Multi-DOF Hand Exoskeleton for Haptic Applications. 2019 7th International Conference on Robotics and Mechatronics (ICRoM), 270–275. https://doi.org/10.1109/ICRoM48714.2019.9071884

Bortone, I., Barsotti, M., Leonardis, D., Crecchi, A., Tozzini, A., Bonfiglio, L., & Frisoli, A. (2020). Immersive Virtual Environments and Wearable Haptic Devices in rehabilitation of children with neuromotor impairments: A single-blind randomized controlled crossover pilot study. Journal of NeuroEngineering and Rehabilitation, 17(1), 144. https://doi.org/10.1186/s12984-020-00771-6

Casilla-Lennon, M. M., Hittelman, A. B., & Netto, J. M. B. (2020). New Robotic Systems. Dalam P. C. Gargollo (Ed.), Minimally Invasive and Robotic-Assisted Surgery in Pediatric Urology (hlm. 405–417). Springer International Publishing. https://doi.org/10.1007/978-3-030-57219-8_27

Chen, E., Chen, L., & Zhang, W. (2025). Robotic-assisted colorectal surgery in colorectal cancer management: A narrative review of clinical efficacy and multidisciplinary integration. Frontiers in Oncology, 15. Scopus. https://doi.org/10.3389/fonc.2025.1502014

Chen, H.-E., Yovanoff, M. A., Pepley, D. F., Sonntag, C. C., Mirkin, K. A., Han, D. C., Moore, J. Z., & Miller, S. R. (2019). Can Haptic Simulators Distinguish Expert Performance? A Case Study in Central Venous Catheterization in Surgical Education. Simulation in Healthcare: The Journal of the Society for Simulation in Healthcare, 14(1), 35–42. https://doi.org/10.1097/SIH.0000000000000352

Coe, P., Farooq, A., Evreinov, G., & Raisamo, R. (2019). Generating Virtual Tactile Exciter for HD Haptics: A Tectonic Actuators’ Case Study. 2019 IEEE SENSORS, 1–4. https://doi.org/10.1109/SENSORS43011.2019.8956569

Connolly, L., Ungi, T., Munawar, A., Deguet, A., Yeung, C., Taylor, R. H., Mousavi, P., Fichtinger, G., & Hashtrudi-Zaad, K. (2025). Touching the tumor boundary: A pilot study on ultrasound-based virtual fixtures for breast-conserving surgery. International Journal of Computer Assisted Radiology and Surgery. Scopus. https://doi.org/10.1007/s11548-025-03342-z

D’Angelo, G., Moawad, G. N., Di Spiezio Sardo, A., Ascione, M., Danzi, R., Giampaolino, P., & Bifulco, G. (2025). 3D Imaging Reconstruction and Laparoscopic Robotic Surgery Approach to Disseminated Peritoneal Leiomyomatosis. Journal of Minimally Invasive Gynecology, 32(2), 111–112. Scopus. https://doi.org/10.1016/j.jmig.2024.10.003

Ding, D., Yao, T., Wang, H., Sun, X., & Luo, R. (2025). Continuum Robotic Catheter Systems for Transcatheter Mitral Valve Procedures: A Technical Review. IEEE Access, 13, 43275–43288. Scopus. https://doi.org/10.1109/ACCESS.2025.3548273

Duan, W., Li, Z., Omisore, O. M., Du, W., Akinyemi, T. O., Chen, X., Gao, X., Wang, H., & Wang, L. (2025). Development of an Intuitive Interface With Haptic Enhancement for Robot-Assisted Endovascular Intervention. IEEE Transactions on Haptics, 18(1), 80–92. Scopus. https://doi.org/10.1109/TOH.2023.3346479

Duygu, Y. C., Xie, B., Zhang, X., Kim, M. J., & Park, C. H. (2025). Real-time teleoperation of magnetic force-driven microrobots with a motion model and stable haptic force feedback for micromanipulation. Nanotechnology and Precision Engineering, 8(2). Scopus. https://doi.org/10.1063/10.0034396

Franz, M., Arend, J., Bollensdorf, A., Lorenz, E., Rahimli, M., Stelter, F., Petersen, M., Gumbs, A. A., & Croner, R. (2025). The impact of indocyanine green on tumor visualization and procedural adjustment in minimally invasive liver surgery. Langenbeck’s Archives of Surgery, 410(1). Scopus. https://doi.org/10.1007/s00423-025-03712-w

Gaba, F., Ash, K., Blyuss, O., Chandrasekaran, D., Nobbenhuis, M., Ind, T., & Brockbank, E. (2025). Robotic Surgery from a Gynaecological Oncology Perspective: A Global Gynaecological Oncology Surgical Outcomes Collaborative Led Study (GO SOAR3). Diseases, 13(1). Scopus. https://doi.org/10.3390/diseases13010009

Giannini, A., Bianchi, M., Doria, D., Fani, S., Caretto, M., Bicchi, A., & Simoncini, T. (2019). Wearable haptic interfaces for applications in gynecologic robotic surgery: A proof of concept in robotic myomectomy. Journal of Robotic Surgery, 13(4), 585–588. https://doi.org/10.1007/s11701-019-00971-w

Giannopoulos, A. A., Buechel, R. R., Ouda, A., & Mitsouras, D. (2020). Is There Role for 3D Modeling in Planning Acquired Heart Disease Surgery? Dalam 3-Dimensional Modeling in Cardiovascular Disease (hlm. 75–86). Elsevier. https://doi.org/10.1016/B978-0-323-65391-6.00006-5

Gomez, E. D., Husin, H. M., Dumon, K. R., Williams, N. N., & Kuchenbecker, K. J. (2025). Simulation training with haptic feedback of instrument vibrations reduces resident workload during live robot-assisted sleeve gastrectomy. Surgical Endoscopy, 39(3), 1523–1535. Scopus. https://doi.org/10.1007/s00464-024-11459-6

Hold, M., Windhagen, H., & Tuecking, L.-R. (2025). Robotics for patellofemoral joint replacement—A step forward in arthroplasty? Orthopadie. Scopus. https://doi.org/10.1007/s00132-025-04653-4

Iovene, E., Monaco, R., Fu, J., Costa, F., Ferrigno, G., & Momi, E. D. (2025). EMG-Based Variable Impedance Control for Enhanced Haptic Feedback in Real-Time Material Recognition. IEEE Transactions on Haptics, 18(1), 220–231. Scopus. https://doi.org/10.1109/TOH.2024.3524023

Kawashima, K., Ghali, S., Nikkhah, D., & Esmaeili, A. (2025). Recent Advancements in Robotic-assisted Plastic Surgery Procedures: A Systematic Review. Plastic and Reconstructive Surgery - Global Open, 13(1). Scopus. https://doi.org/10.1097/GOX.0000000000006476

Kikuchi, T., Ikeda, A., Matsushita, R., & Abe, I. (2025). Evaluation of open-loop torque performance of haptic MR fluid clutch. Journal of Intelligent Material Systems and Structures. Scopus. https://doi.org/10.1177/1045389X251321624

Lazar, D. J., Fingerhut, A., & Ferzli, G. S. (2025). One step forward, two steps back: Preserving surgical skill in the age of robotics. Annals of Laparoscopic and Endoscopic Surgery, 10. Scopus. https://doi.org/10.21037/ales-24-20

Lima, J. C. S., Rocha, H. A. L., Mesquita, F. J. C., Araújo, D. A. B. S., Silveira, R. A. D., & Borges, G. C. (2020). Simulated training model of ureteropyelic anastomosis in laparoscopic pyeloplasty. Acta Cirúrgica Brasileira, 35(11), e351108. https://doi.org/10.1590/acb351108

Mo, Z., Zhang, L., Wang, Q., Dong, P., & Zhang, J. (2025). AI-Enhanced Forecasting in Telesurgery: When Machine Learning Meets Tactile Internet. Dalam Sun L. & Chen Y. (Ed.), Commun. Comput. Info. Sci.: Vol. 2342 CCIS (hlm. 74–95). Springer Science and Business Media Deutschland GmbH; Scopus. https://doi.org/10.1007/978-981-96-2189-7_7

Motiwala, Z. Y., Desai, A., Bisht, R., Lathkar, S., Misra, S., & Carbin, D. D. (2025). Telesurgery: Current status and strategies for latency reduction. Journal of Robotic Surgery, 19(1). Scopus. https://doi.org/10.1007/s11701-025-02333-1

Nakashima, H., Ueda, Y., Miyanari, Y., Nishihara, T., Hamasaki, M., Ohbu, M., Kawashima, K., Yamakage, H., Miyahara, S., Tokuishi, K., Waseda, R., Shiraishi, T., & Sato, T. (2025). In vivo evaluation of tissue damage from varying grasping forces using the Saroa surgical system. Scientific Reports, 15(1). Scopus. https://doi.org/10.1038/s41598-025-95310-5

Novo, J., Seth, I., Mon, Y., Soni, A., Elkington, O., Marcaccini, G., & Rozen, W. M. (2025). Use of Robotic Surgery in Plastic and Reconstructive Surgery: A Narrative Review. Biomimetics, 10(2). Scopus. https://doi.org/10.3390/biomimetics10020097

Oyejide, A., Stroppa, F., & Sarac, M. (2025). Miniaturized soft growing robots for minimally invasive surgeries: Challenges and opportunities. Progress in Biomedical Engineering, 7(3). Scopus. https://doi.org/10.1088/2516-1091/adc9ea

Pisla, D., Hajjar, N. A., Rus, G., Gherman, B., Ciocan, A., Radu, C., Vaida, C., & Chablat, D. (2025). Development of an Augmented Reality Surgical Trainer for Minimally Invasive Pancreatic Surgery. Applied Sciences (Switzerland), 15(7). Scopus. https://doi.org/10.3390/app15073532

Qin, W., Yi, H., Fan, Z., & Zhao, J. (2025). Haptic Shared Control Framework with Interaction Force Constraint Based on Control Barrier Function for Teleoperation. Sensors, 25(2). Scopus. https://doi.org/10.3390/s25020405

Rabieefard, Z., Rostami, M., Khosravi, M. A., & Sadeghnejad, S. (2025). Nonlinear adaptive impedance control of a haptic interaction use in endoscopic sinus surgery simulation system. Meccanica, 60(2), 397–411. Scopus. https://doi.org/10.1007/s11012-025-01948-w

Rae-Dupree, J. (2025). Feel the Precision: Next-Gen Robotic Surgery With Haptic Feedback. IEEE Pulse, 16(1), 12–15. Scopus. https://doi.org/10.1109/MPULS.2025.3526484

Ragavee, U., Swetha, M., Gopika, P., Lemuela mary, J., Saravanapriya, M., & Dharshini, L. K. M. (2025). Hybrid Tactile Internet Framework Revolutionizing Real-Time Human-Machine Interactions with Multi-Modal Technologies. Int. Conf. Mob. Comput. Sustain. Informatics, ICMCSI - Proc., 1811–1818. Scopus. https://doi.org/10.1109/ICMCSI64620.2025.10883481

Saracino, A., Deguet, A., Staderini, F., Boushaki, M. N., Cianchi, F., Menciassi, A., & Sinibaldi, E. (2019). Haptic feedback in the da Vinci Research Kit (dVRK): A user study based on grasping, palpation, and incision tasks. The International Journal of Medical Robotics and Computer Assisted Surgery, 15(4), e1999. https://doi.org/10.1002/rcs.1999

Struebing, F., Gazyakan, E., Bigdeli, A. K., Vollbach, F. H., Weigel, J., Kneser, U., & Boecker, A. (2025). Implementation Strategies and Ergonomic Factors in Robot-assisted Microsurgery. Journal of Robotic Surgery, 19(1). Scopus. https://doi.org/10.1007/s11701-024-02199-9

Sun, J., Foroutani, Y., & Rosen, J. (2025). Virtually Constrained Admittance Control Using Feedback Linearization for Physical Human-Robot Interaction With Rehabilitation Exoskeletons. IEEE/ASME Transactions on Mechatronics, 30(2), 898–909. Scopus. https://doi.org/10.1109/TMECH.2024.3480157

Tekin, A. M., Bleys, R. L. A. W., Matulic, M., Assadi, M. Z., Van De Heyning, P., Bah?i, I., & Topsakal, V. (2025). Next-generation Robotics in Otology: The HEARO Procedure. Journal of Craniofacial Surgery, 36(1), 138–145. Scopus. https://doi.org/10.1097/SCS.0000000000010887

Tian, J., Zhou, Y., Yin, L., AlQahtani, S. A., Tang, M., Lu, S., Wang, R., & Zheng, W. (2025). Control Structures and Algorithms for Force Feedback Bilateral Teleoperation Systems: A Comprehensive Review. CMES - Computer Modeling in Engineering and Sciences, 142(2), 973–1019. Scopus. https://doi.org/10.32604/cmes.2024.057261

Vogt, I., Eisenmann, M., Schlünz, A., Kowal, R., Düx, D., Thormann, M., Glandorf, J., Yerdelen, S. S., Georgiades, M., Odenbach, R., Hensen, B., Gutberlet, M., Wacker, F., Fischbach, F., & Rose, G. (2025). MRI-compatible and sensorless haptic feedback for cable-driven medical robotics to perform teleoperated needle-based interventions. International Journal of Computer Assisted Radiology and Surgery, 20(1), 179–189. Scopus. https://doi.org/10.1007/s11548-024-03267-z

Wang, S., Ren, T., Cheng, N., Wang, R., & Zhang, L. (2025). Dynamic Virtual Simulation with Real-Time Haptic Feedback for Robotic Internal Mammary Artery Harvesting. Bioengineering, 12(3). Scopus. https://doi.org/10.3390/bioengineering12030285

Weik, D., Lorenz, M., Knopp, S., Pelliccia, L., Feierabend, S., Rotsch, C., & Klimant, P. (2019). Integrating Tactile Feedback in an Acetabular Reamer for Surgical VR-Training. 2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), 1227–1228. https://doi.org/10.1109/VR.2019.8798287

Wessel, K. J., Dahmann, S., & Kueckelhaus, M. (2025). Expanding Applications and Future of Robotic Microsurgery. J. Craniofac. Surg., 36(1), 367–371. Scopus. https://doi.org/10.1097/SCS.0000000000010860

Wu, D., Li, Z., Ansari, M. H. D., Ha, X. T., Ourak, M., Dankelman, J., Menciassi, A., De Momi, E., & Poorten, E. V. (2025). Comparative Analysis of Interactive Modalities for Intuitive Endovascular Interventions. IEEE Transactions on Visualization and Computer Graphics, 31(2), 1371–1388. Scopus. https://doi.org/10.1109/TVCG.2024.3362628

Ye, H., & Ju, F. (2025). Full-angle adjustable robotic probe based on flexible microstructure array capacitive sensors. Measurement: Journal of the International Measurement Confederation, 252. Scopus. https://doi.org/10.1016/j.measurement.2025.117364

Zhang, L., Zuo, J., Wang, K., Jiang, T., Gu, S., Xu, L., & Zhang, Y. (2025). An advanced robotic system incorporating haptic feedback for precision cardiac ablation procedures. Scientific Reports, 15(1). Scopus. https://doi.org/10.1038/s41598-025-91342-z

Zhao, W., Huang, Y., Luo, X., & Liu, H. (2025). HM-Array: A Novel Haptic Magnetism-Based Leader-Follower Platform for Minimally Invasive Robotic Surgery. IEEE Transactions on Haptics, 18(1), 124–135. Scopus. https://doi.org/10.1109/TOH.2024.3493629

Authors

Togar Timoteus Gultom
togartimoteusgultom@gmail.com (Primary Contact)
Ajub Ajulian ZM
Siri Lek
Gultom, T. T., ZM, A. A., & Lek, S. (2025). Implementation of Haptic Control in a Robotics System for Remote Surgery. Journal of Moeslim Research Technik, 2(2), 58–68. https://doi.org/10.70177/technik.v2i2.1930

Article Details

No Related Submission Found