The Influence of Generative-Based Online Training Models on the Digital Capabilities of Businesses

Mafrur Udhif Nofaizzi (1), Dedi Kuswandi (2)
(1) Universitas Negeri Malang, Indonesia,
(2) Universitas Negeri Malang, Indonesia

Abstract

This research aims to test the effect of a generative-based online training model on the digital capabilities of MSME players. This research uses quantitative research methods where there are two groups, namely experimental and control, with 20 participants each. Before and after being given treatment, participants were tested using a 25-question multiple choice test. The analysis test uses the normality test and the paired sample t test. The results showed significance for both the experimental group and the control group with a score of <0.05. This shows that there is a positive influence between the generative-based online training model and increasing digital capabilities for MSME players

Full text article

Generated from XML file

References

Awad, A., Fina, F., Goyanes, A., Gaisford, S., & Basit, A. W. (2020). 3D printing: Principles and pharmaceutical applications of selective laser sintering. International Journal of Pharmaceutics, 586, 119594. https://doi.org/10.1016/j.ijpharm.2020.119594

Chatterjee, D. P., & Nandi, A. K. (2021). A review on the recent advances in hybrid supercapacitors. Journal of Materials Chemistry A, 9(29), 15880–15918. https://doi.org/10.1039/D1TA02505H

Chawla, I., Karthikeyan, L., & Mishra, A. K. (2020). A review of remote sensing applications for water security: Quantity, quality, and extremes. Journal of Hydrology, 585, 124826. https://doi.org/10.1016/j.jhydrol.2020.124826

Christensen, D. V., Dittmann, R., Linares-Barranco, B., Sebastian, A., Le Gallo, M., Redaelli, A., Slesazeck, S., Mikolajick, T., Spiga, S., Menzel, S., Valov, I., Milano, G., Ricciardi, C., Liang, S.-J., Miao, F., Lanza, M., Quill, T. J., Keene, S. T., Salleo, A., … Pryds, N. (2022). 2022 roadmap on neuromorphic computing and engineering. Neuromorphic Computing and Engineering, 2(2), 022501. https://doi.org/10.1088/2634-4386/ac4a83

Cresswell, J. W. (2014). Research Design_ Qualitative, Quantitative, and Mixed Method Approaches. Sage Publications, inc.

Darwish, A., Ezzat, D., & Hassanien, A. E. (2020). An optimized model based on convolutional neural networks and orthogonal learning particle swarm optimization algorithm for plant diseases diagnosis. Swarm and Evolutionary Computation, 52, 100616. https://doi.org/10.1016/j.swevo.2019.100616

Dolgui, A., & Ivanov, D. (2022). 5G in digital supply chain and operations management: Fostering flexibility, end-to-end connectivity and real-time visibility through internet-of-everything. International Journal of Production Research, 60(2), 442–451. https://doi.org/10.1080/00207543.2021.2002969

Fiorella, L., & Mayer, R. E. (2015). Learning as a Generative Activity: Eight Learning Strategies That Promote Understanding. Cambridge University Press. https://doi.org/10.1017/CBO9781107415324.004

Gehrmann, C., & Gunnarsson, M. (2020). A Digital Twin Based Industrial Automation and Control System Security Architecture. IEEE Transactions on Industrial Informatics, 16(1), 669–680. https://doi.org/10.1109/TII.2019.2938885

Grabowski, B. L. (2004). Generative learning contributions to the design of instruction and learning. Handbook of Research on Educational Communications and Technology, January 2004, 719–743.

Hervé, A., Schmitt, C., & Baldegger, R. (2020). Internationalization and Digitalization: Applying digital technologies to the internationalization process of small andmedium-sized enterprises. Technology Innovation Management Review, 10(7), 28–40. https://doi.org/10.22215/timreview/1373

Idah, Y. M., & Pinilih, M. (2019). Strategi pengembangan digitalisasi umkm. 5(November), 195–204.

Jain, P., Poon, J., Singh, J. P., Spanos, C., Sanders, S. R., & Panda, S. K. (2020). A Digital Twin Approach for Fault Diagnosis in Distributed Photovoltaic Systems. IEEE Transactions on Power Electronics, 35(1), 940–956. https://doi.org/10.1109/TPEL.2019.2911594

Kamble, S. S., Gunasekaran, A., & Gawankar, S. A. (2020). Achieving sustainable performance in a data-driven agriculture supply chain: A review for research and applications. International Journal of Production Economics, 219, 179–194. https://doi.org/10.1016/j.ijpe.2019.05.022

Lim, K. Y. H., Zheng, P., & Chen, C.-H. (2020). A state-of-the-art survey of Digital Twin: Techniques, engineering product lifecycle management and business innovation perspectives. Journal of Intelligent Manufacturing, 31(6), 1313–1337. https://doi.org/10.1007/s10845-019-01512-w

Meng, Q., Liu, T., Su, C., Niu, H., Hou, Z., & Ghadimi, N. (2020). A Single-Phase Transformer-Less Grid-Tied Inverter Based on Switched Capacitor for PV Application. Journal of Control, Automation and Electrical Systems, 31(1), 257–270. https://doi.org/10.1007/s40313-019-00531-5

Moyne, J., Qamsane, Y., Balta, E. C., Kovalenko, I., Faris, J., Barton, K., & Tilbury, D. M. (2020). A Requirements Driven Digital Twin Framework: Specification and Opportunities. IEEE Access, 8, 107781–107801. https://doi.org/10.1109/ACCESS.2020.3000437

Muzammal, M., Talat, R., Sodhro, A. H., & Pirbhulal, S. (2020). A multi-sensor data fusion enabled ensemble approach for medical data from body sensor networks. Information Fusion, 53, 155–164. https://doi.org/10.1016/j.inffus.2019.06.021

Ohm, Y., Pan, C., Ford, M. J., Huang, X., Liao, J., & Majidi, C. (2021). An electrically conductive silver–polyacrylamide–alginate hydrogel composite for soft electronics. Nature Electronics, 4(3), 185–192. https://doi.org/10.1038/s41928-021-00545-5

Pham, Q.-V., Fang, F., Ha, V. N., Piran, Md. J., Le, M., Le, L. B., Hwang, W.-J., & Ding, Z. (2020). A Survey of Multi-Access Edge Computing in 5G and Beyond: Fundamentals, Technology Integration, and State-of-the-Art. IEEE Access, 8, 116974–117017. https://doi.org/10.1109/ACCESS.2020.3001277

Redelinghuys, A. J. H., Basson, A. H., & Kruger, K. (2020). A six-layer architecture for the digital twin: A manufacturing case study implementation. Journal of Intelligent Manufacturing, 31(6), 1383–1402. https://doi.org/10.1007/s10845-019-01516-6

Rodríguez-Esparza, E., Zanella-Calzada, L. A., Oliva, D., Heidari, A. A., Zaldivar, D., Pérez-Cisneros, M., & Foong, L. K. (2020). An efficient Harris hawks-inspired image segmentation method. Expert Systems with Applications, 155, 113428. https://doi.org/10.1016/j.eswa.2020.113428

Santos, R. C., & Martinho, J. L. (2019). An Industry 4.0 maturity model proposal. Journal of Manufacturing Technology Management, 31(5), 1023–1043. https://doi.org/10.1108/JMTM-09-2018-0284

Saroia, J., Wang, Y., Wei, Q., Lei, M., Li, X., Guo, Y., & Zhang, K. (2020). A review on 3D printed matrix polymer composites: Its potential and future challenges. The International Journal of Advanced Manufacturing Technology, 106(5–6), 1695–1721. https://doi.org/10.1007/s00170-019-04534-z

Sechopoulos, I., Teuwen, J., & Mann, R. (2021). Artificial intelligence for breast cancer detection in mammography and digital breast tomosynthesis: State of the art. Seminars in Cancer Biology, 72, 214–225. https://doi.org/10.1016/j.semcancer.2020.06.002

Shmatko, A., Ghaffari Laleh, N., Gerstung, M., & Kather, J. N. (2022). Artificial intelligence in histopathology: Enhancing cancer research and clinical oncology. Nature Cancer, 3(9), 1026–1038. https://doi.org/10.1038/s43018-022-00436-4

Sircar, A., Yadav, K., Rayavarapu, K., Bist, N., & Oza, H. (2021). Application of machine learning and artificial intelligence in oil and gas industry. Petroleum Research, 6(4), 379–391. https://doi.org/10.1016/j.ptlrs.2021.05.009

Tat, T., Libanori, A., Au, C., Yau, A., & Chen, J. (2021). Advances in triboelectric nanogenerators for biomedical sensing. Biosensors and Bioelectronics, 171, 112714. https://doi.org/10.1016/j.bios.2020.112714

Wang, Y., Tian, J., Sun, Z., Wang, L., Xu, R., Li, M., & Chen, Z. (2020). A comprehensive review of battery modeling and state estimation approaches for advanced battery management systems. Renewable and Sustainable Energy Reviews, 131, 110015. https://doi.org/10.1016/j.rser.2020.110015

Wei, K., Fu, Y., Yang, J., & Huang, H. (2020). A Physics-Based Noise Formation Model for Extreme Low-Light Raw Denoising. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2755–2764. https://doi.org/10.1109/CVPR42600.2020.00283

Wittrock, M. C. (1974). Learning as a generative process1. Educational Psychologist, 11(2), 87–95. https://doi.org/10.1080/00461527409529129

Wittrock, M. C. (1992). Generative Learning Processes of the Brain. Educational Psychologist, 27(4), 531–541. https://doi.org/10.1207/s15326985ep2704_8

Wollny, S., Schneider, J., Di Mitri, D., Weidlich, J., Rittberger, M., & Drachsler, H. (2021). Are We There Yet? - A Systematic Literature Review on Chatbots in Education. Frontiers in Artificial Intelligence, 4, 654924. https://doi.org/10.3389/frai.2021.654924

Xia, K., Sacco, C., Kirkpatrick, M., Saidy, C., Nguyen, L., Kircaliali, A., & Harik, R. (2021). A digital twin to train deep reinforcement learning agent for smart manufacturing plants: Environment, interfaces and intelligence. Journal of Manufacturing Systems, 58, 210–230. https://doi.org/10.1016/j.jmsy.2020.06.012

Xie, X., Ma, Y., Liu, B., He, J., Li, S., & Wang, H. (2020). A Deep-Learning-Based Real-Time Detector for Grape Leaf Diseases Using Improved Convolutional Neural Networks. Frontiers in Plant Science, 11, 751. https://doi.org/10.3389/fpls.2020.00751

Zhang, H., Gu, M., Jiang, X. D., Thompson, J., Cai, H., Paesani, S., Santagati, R., Laing, A., Zhang, Y., Yung, M. H., Shi, Y. Z., Muhammad, F. K., Lo, G. Q., Luo, X. S., Dong, B., Kwong, D. L., Kwek, L. C., & Liu, A. Q. (2021). An optical neural chip for implementing complex-valued neural network. Nature Communications, 12(1), 457. https://doi.org/10.1038/s41467-020-20719-7

Zhang, X. G., Jiang, W. X., Jiang, H. L., Wang, Q., Tian, H. W., Bai, L., Luo, Z. J., Sun, S., Luo, Y., Qiu, C.-W., & Cui, T. J. (2020). An optically driven digital metasurface for programming electromagnetic functions. Nature Electronics, 3(3), 165–171. https://doi.org/10.1038/s41928-020-0380-5

Authors

Mafrur Udhif Nofaizzi
udhiftep@gmail.com (Primary Contact)
Dedi Kuswandi
Nofaizzi, M. U., & Kuswandi, D. (2024). The Influence of Generative-Based Online Training Models on the Digital Capabilities of Businesses. Scientechno: Journal of Science and Technology, 3(1), 85–94. https://doi.org/10.55849/scientechno.v3i1.679

Article Details

No Related Submission Found