Application of Nanotechnology in Fertilization and Plant Protection in Germany

Thomas Pires (1), Marie Janssen (2), Kiril Pavlov (3)
(1) University of Liege, Belgium,
(2) University of Brussels, Belgium,
(3) University of Rousse, Bulgaria

Abstract

Nanotechnology has emerged as an innovative solution in the agricultural sector, particularly in fertilizing and plant protection in Germany. The background of this research is the need to improve agricultural efficiency by reducing the use of chemical inputs and increasing the absorption of plant nutrients. This study aims to evaluate the impact of nanotechnology on fertilization efficiency, crop protection, and farmers' operational costs. The research uses a mixed approach, involving 200 farmers through surveys and interviews, as well as laboratory data analysis related to nutrient absorption and pesticide residues. The results showed that nanotechnology increased nutrient absorption by 25%, reduced pest attacks by up to 30%, and reduced the use of fertilizers and pesticides by up to 20%. The conclusion of this study is that nanotechnology is effective in improving agricultural technical and economic efficiency, so it has the potential to become an important component in sustainable agriculture in Germany.


 

Full text article

Generated from XML file

References

Ali, J. A., Kalhury, A. M., Sabir, A. N., Ahmed, R. N., Ali, N. H., & Abdullah, A. D. (2020). A state-of-the-art review of the application of nanotechnology in the oil and gas industry with a focus on drilling engineering. Journal of Petroleum Science and Engineering, 191, 107118. https://doi.org/10.1016/j.petrol.2020.107118

Al-Moubaraki, A. H., Chaouiki, A., Alahmari, J. M., Al-hammadi, W. A., Noor, E. A., Al-Ghamdi, A. A., & Ko, Y. G. (2022). Development of Natural Plant Extracts as Sustainable Inhibitors for Efficient Protection of Mild Steel: Experimental and First-Principles Multi-Level Computational Methods. Materials, 15(23), 8688. https://doi.org/10.3390/ma15238688

An, Z., Wang, C., Raj, B., Eswaran, S., Raffik, R., Debnath, S., & Rahin, S. A. (2022). Application of New Technology of Intelligent Robot Plant Protection in Ecological Agriculture. Journal of Food Quality, 2022, 1–7. https://doi.org/10.1155/2022/1257015

Ashfaq, A., Khursheed, N., Fatima, S., Anjum, Z., & Younis, K. (2022). Application of nanotechnology in food packaging: Pros and Cons. Journal of Agriculture and Food Research, 7, 100270. https://doi.org/10.1016/j.jafr.2022.100270

Benefits and Application of Nanotechnology in Environmental Science: An Overview. (2020). Biointerface Research in Applied Chemistry, 11(1), 7860–7870. https://doi.org/10.33263/BRIAC111.78607870

Chao, C., Zheng, X., Weng, Y., Liu, Y., Gao, P., & Tai, N. (2022). Adaptive Distance Protection Based on the Analytical Model of Additional Impedance for Inverter-Interfaced Renewable Power Plants During Asymmetrical Faults. IEEE Transactions on Power Delivery, 37(5), 3823–3834. https://doi.org/10.1109/TPWRD.2021.3138128

Chowdhury, A., Paladhi, S., & Pradhan, A. K. (2022). Adaptive Unit Protection for Lines Connecting Large Solar Plants Using Incremental Current Ratio. IEEE Systems Journal, 16(2), 3272–3283. https://doi.org/10.1109/JSYST.2021.3107331

Fernández, A. G., & Cabeza, L. F. (2020). Anodic Protection Assessment Using Alumina-Forming Alloys in Chloride Molten Salt for CSP Plants. Coatings, 10(2), 138. https://doi.org/10.3390/coatings10020138

Gollong, G., Neuwald, I. J., Kuckelkorn, J., Junek, R., & Zahn, D. (2022). Assessing the protection gap for mobile and persistent chemicals during advanced water treatment – A study in a drinking water production and wastewater treatment plant. Water Research, 221, 118847. https://doi.org/10.1016/j.watres.2022.118847

Grunwald, D., Panten, K., Schwarz, A., Bischoff, W., & Schittenhelm, S. (2020). Comparison of maize, permanent cup plant and a perennial grass mixture with regard to soil and water protection. GCB Bioenergy, 12(9), 694–705. https://doi.org/10.1111/gcbb.12719

Jin, C., Wang, K., Oppong-Gyebi, A., & Hu, J. (2020). Application of Nanotechnology in Cancer Diagnosis and Therapy—A Mini-Review. International Journal of Medical Sciences, 17(18), 2964–2973. https://doi.org/10.7150/ijms.49801

Julian, W. T., Vasilchenko, A. V., Shpindyuk, D. D., Poshvina, D. V., & Vasilchenko, A. S. (2020). Bacterial-Derived Plant Protection Metabolite 2,4-Diacetylphloroglucinol: Effects on Bacterial Cells at Inhibitory and Subinhibitory Concentrations. Biomolecules, 11(1), 13. https://doi.org/10.3390/biom11010013

Khatua, S., & Mukherjee, V. (2021). Adaptive overcurrent protection scheme suitable for station blackout power supply of nuclear power plant operated through an integrated microgrid. Electric Power Systems Research, 192, 106934. https://doi.org/10.1016/j.epsr.2020.106934

Kolainis, S., Koletti, A., Lykogianni, M., Karamanou, D., Gkizi, D., Tjamos, S. E., Paraskeuopoulos, A., & Aliferis, K. A. (2020). An integrated approach to improve plant protection against olive anthracnose caused by the Colletotrichum acutatum species complex. PLOS ONE, 15(5), e0233916. https://doi.org/10.1371/journal.pone.0233916

Kvakkestad, V., Sundbye, A., Gwynn, R., & Klingen, I. (2020). Authorization of microbial plant protection products in the Scandinavian countries: A comparative analysis. Environmental Science & Policy, 106, 115–124. https://doi.org/10.1016/j.envsci.2020.01.017

Ma, H., Zhao, Y., Lu, Z., Xing, R., Yao, X., Jin, Z., Wang, Y., & Yu, F. (2020). Citral-loaded chitosan/carboxymethyl cellulose copolymer hydrogel microspheres with improved antimicrobial effects for plant protection. International Journal of Biological Macromolecules, 164, 986–993. https://doi.org/10.1016/j.ijbiomac.2020.07.164

Maldonado-Reina, A. J., López-Ruiz, R., Garrido Frenich, A., Arrebola, F. J., & Romero-González, R. (2021). Co-formulants in plant protection products: An analytical approach to their determination by gas chromatography–high resolution mass accuracy spectrometry. Talanta, 234, 122641. https://doi.org/10.1016/j.talanta.2021.122641

Manikandan, S., Subbaiya, R., Saravanan, M., Ponraj, M., Selvam, M., & Pugazhendhi, A. (2022). A critical review of advanced nanotechnology and hybrid membrane based water recycling, reuse, and wastewater treatment processes. Chemosphere, 289, 132867. https://doi.org/10.1016/j.chemosphere.2021.132867

Medina Cruz, D., Mostafavi, E., Vernet-Crua, A., Barabadi, H., Shah, V., Cholula-Díaz, J. L., Guisbiers, G., & Webster, T. J. (2020). Green nanotechnology-based zinc oxide (ZnO) nanomaterials for biomedical applications: A review. Journal of Physics: Materials, 3(3), 034005. https://doi.org/10.1088/2515-7639/ab8186

Mitra, D., Mondal, R., Khoshru, B., Senapati, A., Radha, T. K., Mahakur, B., Uniyal, N., Myo, E. M., Boutaj, H., Sierra, B. E. G., Panneerselvam, P., Ganeshamurthy, A. N., Elkovi?, S. A., Vasi?, T., Rani, A., Dutta, S., & Mohapatra, P. K. D. (2022). Actinobacteria-enhanced plant growth, nutrient acquisition, and crop protection: Advances in soil, plant, and microbial multifactorial interactions. Pedosphere, 32(1), 149–170. https://doi.org/10.1016/S1002-0160(21)60042-5

Miyazawa, T., Itaya, M., Burdeos, G. C., Nakagawa, K., & Miyazawa, T. (2021). A Critical Review of the Use of Surfactant-Coated Nanoparticles in Nanomedicine and Food Nanotechnology. International Journal of Nanomedicine, Volume 16, 3937–3999. https://doi.org/10.2147/IJN.S298606

Mukherjee, R. K., Kumar, V., & Roy, K. (2022). Chemometric modeling of plant protection products (PPPs) for the prediction of acute contact toxicity against honey bees (A. mellifera): A 2D-QSAR approach. Journal of Hazardous Materials, 423, 127230. https://doi.org/10.1016/j.jhazmat.2021.127230

Ni, M., Wang, H., Liu, X., Liao, Y., Fu, L., Wu, Q., Mu, J., Chen, X., & Li, J. (2021). Design of Variable Spray System for Plant Protection UAV Based on CFD Simulation and Regression Analysis. Sensors, 21(2), 638. https://doi.org/10.3390/s21020638

Paladhi, S., & Pradhan, A. K. (2021). Adaptive Distance Protection for Lines Connecting Converter-Interfaced Renewable Plants. IEEE Journal of Emerging and Selected Topics in Power Electronics, 9(6), 7088–7098. https://doi.org/10.1109/JESTPE.2020.3000276

Pan, H., Huang, W., Wu, L., Hong, Q., Hu, Z., Wang, M., & Zhang, F. (2022). A pH Dual-Responsive Multifunctional Nanoparticle Based on Mesoporous Silica with Metal-Polymethacrylic Acid Gatekeeper for Improving Plant Protection and Nutrition. Nanomaterials, 12(4), 687. https://doi.org/10.3390/nano12040687

Phung, C. D., Tran, T. H., Pham, L. M., Nguyen, H. T., Jeong, J.-H., Yong, C. S., & Kim, J. O. (2020). Current developments in nanotechnology for improved cancer treatment, focusing on tumor hypoxia. Journal of Controlled Release, 324, 413–429. https://doi.org/10.1016/j.jconrel.2020.05.029

Pramanik, P. K. D., Solanki, A., Debnath, A., Nayyar, A., El-Sappagh, S., & Kwak, K.-S. (2020). Advancing Modern Healthcare With Nanotechnology, Nanobiosensors, and Internet of Nano Things: Taxonomies, Applications, Architecture, and Challenges. IEEE Access, 8, 65230–65266. https://doi.org/10.1109/ACCESS.2020.2984269

Pushparaj, K., Liu, W.-C., Meyyazhagan, A., Orlacchio, A., Pappusamy, M., Vadivalagan, C., Robert, A. A., Arumugam, V. A., Kamyab, H., Klemeš, J. J., Khademi, T., Mesbah, M., Chelliapan, S., & Balasubramanian, B. (2022). Nano- from nature to nurture: A comprehensive review on facets, trends, perspectives and sustainability of nanotechnology in the food sector. Energy, 240, 122732. https://doi.org/10.1016/j.energy.2021.122732

Ramírez, V., Martínez, J., Bustillos?Cristales, M. D. R., Catañeda?Antonio, D., Munive, J., & Baez, A. (2022). Bacillus cereus MH778713 elicits tomato plant protection against Fusarium oxysporum. Journal of Applied Microbiology, 132(1), 470–482. https://doi.org/10.1111/jam.15179

Rossini, L., Contarini, M., Severini, M., Talano, D., & Speranza, S. (2020). A Modelling Approach to Describe the Anthonomus eugenii (Coleoptera: Curculionidae) Life Cycle in Plant Protection: A Priori and a Posteriori Analysis. Florida Entomologist, 103(2), 259. https://doi.org/10.1653/024.103.0217

Sharma, P., Aswini, K., Sai Prasad, J., Kumar, N., Pathak, D., Gond, S., Venkadasamy, G., & Suman, A. (2023). Characterization of actinobacteria from wheat seeds for plant growth promoting traits and protection against fungal pathogens. Journal of Basic Microbiology, 63(3–4), 439–453. https://doi.org/10.1002/jobm.202200259

Singh, P., & Pradhan, A. K. (2020). A Local measurement based protection technique for distribution system with photovoltaic plants. IET Renewable Power Generation, 14(6), 996–1003. https://doi.org/10.1049/iet-rpg.2019.0996

Sportelli, M. C., Izzi, M., Kukushkina, E. A., Hossain, S. I., Picca, R. A., Ditaranto, N., & Cioffi, N. (2020). Can Nanotechnology and Materials Science Help the Fight against SARS-CoV-2? Nanomaterials, 10(4), 802. https://doi.org/10.3390/nano10040802

Ugalde, J. M., Lamig, L., Herrera-Vásquez, A., Fuchs, P., Homagk, M., Kopriva, S., Müller-Schüssele, S. J., Holuigue, L., & Meyer, A. J. (2021). A dual role for glutathione transferase U7 in plant growth and protection from methyl viologen-induced oxidative stress. Plant Physiology, 187(4), 2451–2468. https://doi.org/10.1093/plphys/kiab444

Velivelli, S. L. S., Czymmek, K. J., Li, H., Shaw, J. B., Buchko, G. W., & Shah, D. M. (2020). Antifungal symbiotic peptide NCR044 exhibits unique structure and multifaceted mechanisms of action that confer plant protection. Proceedings of the National Academy of Sciences, 117(27), 16043–16054. https://doi.org/10.1073/pnas.2003526117

Wambacq, E., Alloul, A., Grunert, O., Carrette, J., Vermeir, P., Spanoghe, J., Sakarika, M., Vlaeminck, S. E., & Haesaert, G. (2022). Aerobes and phototrophs as microbial organic fertilizers: Exploring mineralization, fertilization and plant protection features. PLOS ONE, 17(2), e0262497. https://doi.org/10.1371/journal.pone.0262497

Xu, Y., Sun, Z., Xue, X., Gu, W., & Peng, B. (2020). A hybrid algorithm based on MOSFLA and GA for multi-UAVs plant protection task assignment and sequencing optimization. Applied Soft Computing, 96, 106623. https://doi.org/10.1016/j.asoc.2020.106623

Yang, D. (2021). Application of Nanotechnology in the COVID-19 Pandemic. International Journal of Nanomedicine, Volume 16, 623–649. https://doi.org/10.2147/IJN.S296383

Yang, J., Shi, Z., Liu, R., Wu, Y., & Zhang, X. (2020). Combined-therapeutic strategies synergistically potentiate glioblastoma multiforme treatment via nanotechnology. Theranostics, 10(7), 3223–3239. https://doi.org/10.7150/thno.40298

Zhu, Y., Guo, Q., Tang, Y., Zhu, X., He, Y., Huang, H., & Luo, S. (2022). CFD simulation and measurement of the downwash airflow of a quadrotor plant protection UAV during operation. Computers and Electronics in Agriculture, 201, 107286. https://doi.org/10.1016/j.compag.2022.107286

Authors

Thomas Pires
thomaspires@gmail.com (Primary Contact)
Marie Janssen
Kiril Pavlov
Pires, T., Janssen, M., & Pavlov, K. (2025). Application of Nanotechnology in Fertilization and Plant Protection in Germany. Techno Agriculturae Studium of Research, 2(2), 104–113. https://doi.org/10.70177/agriculturae.v2i2.1996

Article Details