Prediction Model for Diagnosing Heart Disease Using Classification Algorithm

Risqy Siwi Pradini (1), Mochammad Anshori (2), M. Syauqi Haris (3), Busatto Marilia (4), Tostes Geraldo (5)
(1) Institut Teknologi Sains dan Kesehatan RS dr. Soepraoen Kesdam V/BRW, Indonesia,
(2) Institut Teknologi Sains dan Kesehatan RS dr. Soepraoen Kesdam V/BRW, Indonesia,
(3) Institut Teknologi Sains dan Kesehatan RS dr. Soepraoen Kesdam V/BRW, Indonesia,
(4) Nanjing Normal University, China,
(5) University of Nairobi, Kenya

Abstract

Heart disease often causes death if not treated quickly and appropriately. Early diagnosis can prevent more serious complications and treat heart disease patients best. The existence of a disease prediction model can help health workers to diagnose diseases more quickly and accurately. The heart disease prediction model using a classification algorithm is a system built using machine learning techniques. The classification algorithm chosen is NN, Naive Bayes, Random Forest, and SVM because it is the best algorithm for predicting heart disease. This study makes a comparison of the four algorithms using a dataset of 918 instances with 11 features. The result is that the Random Forest algorithm produces the highest accuracy, with 86.8%, and has the best ability to distinguish classes based on the ROC curve.

Full text article

Generated from XML file

References

Arnett, D. K., Blumenthal, R. S., Albert, M. A., Buroker, A. B., Goldberger, Z. D., Hahn, E. J., Himmelfarb, C. D., Khera, A., Lloyd-Jones, D., McEvoy, J. W., Michos, E. D., Miedema, M. D., Muñoz, D., Smith, S. C., Virani, S. S., Williams, K. A., Yeboah, J., & Ziaeian, B. (2019). 2019 ACC/AHA Guideline on the Primary Prevention of Cardiovascular Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation, 140(11). https://doi.org/10.1161/CIR.0000000000000678

Babu, M. S., & Karthick, V. (2022). Improving Accuracy in Intelligent Coronary Heart Disease Diagnosis Prediction Model using Support Vector Clustering Technique Compared over Random Forest Classifier Algorithm. 2022 International Conference on Innovative Computing, Intelligent Communication and Smart Electrical Systems (ICSES), 1–5. https://doi.org/10.1109/ICSES55317.2022.9914283

Bechthold, A., Boeing, H., Schwedhelm, C., Hoffmann, G., Knüppel, S., Iqbal, K., De Henauw, S., Michels, N., Devleesschauwer, B., Schlesinger, S., & Schwingshackl, L. (2019). Food groups and risk of coronary heart disease, stroke and heart failure: A systematic review and dose-response meta-analysis of prospective studies. Critical Reviews in Food Science and Nutrition, 59(7), 1071–1090. https://doi.org/10.1080/10408398.2017.1392288

Bemando, C., Miranda, E., & Aryuni, M. (2021). Machine-Learning-Based Prediction Models of Coronary Heart Disease Using Naïve Bayes and Random Forest Algorithms. 2021 International Conference on Software Engineering & Computer Systems and 4th International Conference on Computational Science and Information Management (ICSECS-ICOCSIM), 232–237. https://doi.org/10.1109/ICSECS52883.2021.00049

Benjamin, E. J., Muntner, P., Alonso, A., Bittencourt, M. S., Callaway, C. W., Carson, A. P., Chamberlain, A. M., Chang, A. R., Cheng, S., Das, S. R., Delling, F. N., Djousse, L., Elkind, M. S. V., Ferguson, J. F., Fornage, M., Jordan, L. C., Khan, S. S., Kissela, B. M., Knutson, K. L., … On behalf of the American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee. (2019). Heart Disease and Stroke Statistics—2019 Update: A Report From the American Heart Association. Circulation, 139(10). https://doi.org/10.1161/CIR.0000000000000659

Bertrand, D., Hamzaoui, M., Lemée, V., Lamulle, J., Hanoy, M., Laurent, C., Lebourg, L., Etienne, I., Lemoine, M., Le Roy, F., Nezam, D., Plantier, J.-C., Boyer, O., Guerrot, D., & Candon, S. (2021). Antibody and T Cell Response to SARS-CoV-2 Messenger RNA BNT162b2 Vaccine in Kidney Transplant Recipients and Hemodialysis Patients. Journal of the American Society of Nephrology, 32(9), 2147–2152. https://doi.org/10.1681/ASN.2021040480

Department of Computer Science and Engineering, SRM Institute of Science and Technology, Chennai, Tamil Nadu, India., Dhiman, A., Mohapatra, K., Department of Computer Science and Engineering, SRM Institute of Science and Technology, Chennai, Tamil Nadu, India., Jagdishkumar, P. R., & Department of Computer Science and Engineering, SRM Institute of Science and Technology, Chennai, Tamil Nadu, India. (2019). An Automatic System for Heart Disease Prediction using Perceptron Model and Gradient Descent Algorithm. International Journal of Engineering and Advanced Technology, 9(1), 1506–1509. https://doi.org/10.35940/ijeat.A1278.109119

Ference, B. A., Kastelein, J. J. P., Ray, K. K., Ginsberg, H. N., Chapman, M. J., Packard, C. J., Laufs, U., Oliver-Williams, C., Wood, A. M., Butterworth, A. S., Di Angelantonio, E., Danesh, J., Nicholls, S. J., Bhatt, D. L., Sabatine, M. S., & Catapano, A. L. (2019). Association of Triglyceride-Lowering LPL Variants and LDL-C–Lowering LDLR Variants With Risk of Coronary Heart Disease. JAMA, 321(4), 364. https://doi.org/10.1001/jama.2018.20045

Hackshaw, A., Morris, J. K., Boniface, S., Tang, J.-L., & Milenkovi?, D. (2018). Low cigarette consumption and risk of coronary heart disease and stroke: Meta-analysis of 141 cohort studies in 55 study reports. BMJ, j5855. https://doi.org/10.1136/bmj.j5855

Hameetha Begum, S., & Nisha Rani, S. N. (2021). Model Evaluation of Various Supervised Machine Learning Algorithm for Heart Disease Prediction. 2021 International Conference on Software Engineering & Computer Systems and 4th International Conference on Computational Science and Information Management (ICSECS-ICOCSIM), 119–123. https://doi.org/10.1109/ICSECS52883.2021.00029

Haq, A. U., Li, J., Memon, M. H., Hunain Memon, M., Khan, J., & Marium, S. M. (2019). Heart Disease Prediction System Using Model Of Machine Learning and Sequential Backward Selection Algorithm for Features Selection. 2019 IEEE 5th International Conference for Convergence in Technology (I2CT), 1–4. https://doi.org/10.1109/I2CT45611.2019.9033683

L, P. R., Jinny, S. V., & Mate, Y. V. (2021). Early prediction model for coronary heart disease using genetic algorithms, hyper-parameter optimization and machine learning techniques. Health and Technology, 11(1), 63–73. https://doi.org/10.1007/s12553-020-00508-4

Lakshmi, A., & Devi, R. (2023). Heart Disease Prediction Model using Genetic Algorithm and Support Vector Machine. 2023 7th International Conference on Intelligent Computing and Control Systems (ICICCS), 824–829. https://doi.org/10.1109/ICICCS56967.2023.10142858

Latha, C. B. C., & Jeeva, S. C. (2019). Improving the accuracy of prediction of heart disease risk based on ensemble classification techniques. Informatics in Medicine Unlocked, 16, 100203. https://doi.org/10.1016/j.imu.2019.100203

Mehta, L. S., Watson, K. E., Barac, A., Beckie, T. M., Bittner, V., Cruz-Flores, S., Dent, S., Kondapalli, L., Ky, B., Okwuosa, T., Piña, I. L., & Volgman, A. S. (2018). Cardiovascular Disease and Breast Cancer: Where These Entities Intersect: A Scientific Statement From the American Heart Association. Circulation, 137(8). https://doi.org/10.1161/CIR.0000000000000556

Mohan, B., Garg, P., Bali, R., Arya, R., Tandon, R., Goyal, A., Singh, B., Chhabra, S., Aslam, N., & Wander, G. (2019). Unusual case of intraoperative acute cor pulmonale during spine surgery. Annals of Cardiac Anaesthesia, 22(2), 229. https://doi.org/10.4103/aca.ACA_128_18

Naidu, T. P., Amar Gopal, K., Ahmed, S. R., Revathi, R., Ahammad, S. H., Rajesh, V., Inthiyaz, S., & Saikumar, K. (2021). A Hybridized Model for the Prediction of Heart Disease using ML Algorithms. 2021 3rd International Conference on Advances in Computing, Communication Control and Networking (ICAC3N), 256–261. https://doi.org/10.1109/ICAC3N53548.2021.9725780

Otto, C. M., Nishimura, R. A., Bonow, R. O., Carabello, B. A., Erwin, J. P., Gentile, F., Jneid, H., Krieger, E. V., Mack, M., McLeod, C., O’Gara, P. T., Rigolin, V. H., Sundt, T. M., Thompson, A., & Toly, C. (2021). 2020 ACC/AHA Guideline for the Management of Patients With Valvular Heart Disease: Executive Summary: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation, 143(5). https://doi.org/10.1161/CIR.0000000000000932

Powell-Wiley, T. M., Poirier, P., Burke, L. E., Després, J.-P., Gordon-Larsen, P., Lavie, C. J., Lear, S. A., Ndumele, C. E., Neeland, I. J., Sanders, P., St-Onge, M.-P., & On behalf of the American Heart Association Council on Lifestyle and Cardiometabolic Health; Council on Cardiovascular and Stroke Nursing; Council on Clinical Cardiology; Council on Epidemiology and Prevention; and Stroke Council. (2021). Obesity and Cardiovascular Disease: A Scientific Statement From the American Heart Association. Circulation, 143(21). https://doi.org/10.1161/CIR.0000000000000973

Stout, K. K., Daniels, C. J., Aboulhosn, J. A., Bozkurt, B., Broberg, C. S., Colman, J. M., Crumb, S. R., Dearani, J. A., Fuller, S., Gurvitz, M., Khairy, P., Landzberg, M. J., Saidi, A., Valente, A. M., & Van Hare, G. F. (2019). 2018 AHA/ACC Guideline for the Management of Adults With Congenital Heart Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation, 139(14). https://doi.org/10.1161/CIR.0000000000000603

Tamis-Holland, J. E., Jneid, H., Reynolds, H. R., Agewall, S., Brilakis, E. S., Brown, T. M., Lerman, A., Cushman, M., Kumbhani, D. J., Arslanian-Engoren, C., Bolger, A. F., Beltrame, J. F., & On behalf of the American Heart Association Interventional Cardiovascular Care Committee of the Council on Clinical Cardiology; Council on Cardiovascular and Stroke Nursing; Council on Epidemiology and Prevention; and Council on Quality of Care and Outcomes Research. (2019). Contemporary Diagnosis and Management of Patients With Myocardial Infarction in the Absence of Obstructive Coronary Artery Disease: A Scientific Statement From the American Heart Association. Circulation, 139(18). https://doi.org/10.1161/CIR.0000000000000670

Tuli, S., Basumatary, N., Gill, S. S., Kahani, M., Arya, R. C., Wander, G. S., & Buyya, R. (2020). HealthFog: An ensemble deep learning based Smart Healthcare System for Automatic Diagnosis of Heart Diseases in integrated IoT and fog computing environments. Future Generation Computer Systems, 104, 187–200. https://doi.org/10.1016/j.future.2019.10.043

Upadhyay, S., Dwivedi, A., Verma, A., & Tiwari, V. (2023). Heart Disease Prediction Model using various Supervised Learning Algorithm. 2023 IEEE 12th International Conference on Communication Systems and Network Technologies (CSNT), 197–201. https://doi.org/10.1109/CSNT57126.2023.10134595

Vachiéry, J.-L., Tedford, R. J., Rosenkranz, S., Palazzini, M., Lang, I., Guazzi, M., Coghlan, G., Chazova, I., & De Marco, T. (2019). Pulmonary hypertension due to left heart disease. European Respiratory Journal, 53(1), 1801897. https://doi.org/10.1183/13993003.01897-2018

Vahanian, A., Beyersdorf, F., Praz, F., Milojevic, M., Baldus, S., Bauersachs, J., Capodanno, D., Conradi, L., De Bonis, M., De Paulis, R., Delgado, V., Freemantle, N., Gilard, M., Haugaa, K. H., Jeppsson, A., Jüni, P., Pierard, L., Prendergast, B. D., Sádaba, J. R., … Sharipov, I. (2022). 2021 ESC/EACTS Guidelines for the management of valvular heart disease. European Heart Journal, 43(7), 561–632. https://doi.org/10.1093/eurheartj/ehab395

Velswamy, K., Velswamy, R., Swamidason, I. T. J., & Chinnaiyan, S. (2022). Classification model for heart disease prediction with feature selection through modified bee algorithm. Soft Computing, 26(23), 13049–13057. https://doi.org/10.1007/s00500-021-06330-y

Verma, S., Mazer, C. D., Yan, A. T., Mason, T., Garg, V., Teoh, H., Zuo, F., Quan, A., Farkouh, M. E., Fitchett, D. H., Goodman, S. G., Goldenberg, R. M., Al-Omran, M., Gilbert, R. E., Bhatt, D. L., Leiter, L. A., Jüni, P., Zinman, B., Connelly, K. A., & For the EMPA-HEART CardioLink-6 Investigators. (2019). Effect of Empagliflozin on Left Ventricular Mass in Patients With Type 2 Diabetes Mellitus and Coronary Artery Disease: The EMPA-HEART CardioLink-6 Randomized Clinical Trial. Circulation, 140(21), 1693–1702. https://doi.org/10.1161/CIRCULATIONAHA.119.042375

Virani, S. S., Alonso, A., Benjamin, E. J., Bittencourt, M. S., Callaway, C. W., Carson, A. P., Chamberlain, A. M., Chang, A. R., Cheng, S., Delling, F. N., Djousse, L., Elkind, M. S. V., Ferguson, J. F., Fornage, M., Khan, S. S., Kissela, B. M., Knutson, K. L., Kwan, T. W., Lackland, D. T., … On behalf of the American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee. (2020). Heart Disease and Stroke Statistics—2020 Update: A Report From the American Heart Association. Circulation, 141(9). https://doi.org/10.1161/CIR.0000000000000757

Yang, J., & Guan, J. (2022). A Heart Disease Prediction Model Based on Feature Optimization and Smote-Xgboost Algorithm. Information, 13(10), 475. https://doi.org/10.3390/info13100475

Authors

Risqy Siwi Pradini
risqypradini@itsk-soepraoen.ac.id (Primary Contact)
Mochammad Anshori
M. Syauqi Haris
Busatto Marilia
Tostes Geraldo
Pradini, R. S., Anshori, M., Haris, M. S., Marilia, B., & Geraldo, T. (2023). Prediction Model for Diagnosing Heart Disease Using Classification Algorithm. Journal of World Future Medicine, Health and Nursing, 1(2), 125–133. https://doi.org/10.55849/health.v1i2.347

Article Details

Analysis of Physical Activity Patterns using Wearable Sensors in the Management of Heart Disease

Belinda Arbitya Dewi, Agus Mukholid, Rini Ambarwati, Hermansyah Hermansyah, Arnes Yuli Vandika
Abstract View : 320
Download :162