Timing of Colostrum Expulsion Based on Type of Labor in Fourth Period Laboring Mothers
Abstract
Colostrum is the best food and is an antibody for babies. Breast milk is a nutritional requirement for newborns, colostrum is yellow, low in fat but high in carbohydrates, protein and especially antibody content. This study aims to determine the relationship between the type of delivery and colostrum excretion in women in the fourth stage of labor. This type of research is a quantitative study using observational analytic methods. The population in this study were all mothers giving birth in the fourth stage at EMC Pulomas Hospital as many as 80 respondents. The statistical test uses the chi-square test. There is a significant relationship between the type of delivery and the time the colostrum comes out at the EMC Pulomas Hospital, Jakarta. evident from the value of p = 0.002. There is a significant relationship between the type of delivery and the time colostrum is released at EMC Pulomas Hospital, Jakarta, so it is necessary to provide counseling on types of delivery and its side effects
Full text article
References
Abie, B. M., & Goshu, Y. A. (2019). Early initiation of breastfeeding and colostrum feeding among mothers of children aged less than 24 months in Debre Tabor, northwest Ethiopia: A cross-sectional study. BMC Research Notes, 12(1), 65. https://doi.org/10.1186/s13104-019-4094-6
Abuelo, A., Havrlant, P., Wood, N., & Hernandez-Jover, M. (2019). An investigation of dairy calf management practices, colostrum quality, failure of transfer of passive immunity, and occurrence of enteropathogens among Australian dairy farms. Journal of Dairy Science, 102(9), 8352–8366. https://doi.org/10.3168/jds.2019-16578
Arslan, A., Kaplan, M., Duman, H., Bayraktar, A., Ertürk, M., Henrick, B. M., Frese, S. A., & Karav, S. (2021). Bovine Colostrum and Its Potential for Human Health and Nutrition. Frontiers in Nutrition, 8, 651721. https://doi.org/10.3389/fnut.2021.651721
Borad, S. G., & Singh, A. K. (2018). Colostrum immunoglobulins: Processing, preservation and application aspects. International Dairy Journal, 85, 201–210. https://doi.org/10.1016/j.idairyj.2018.05.016
Brunse, A., Worsøe, P., Pors, S. E., Skovgaard, K., & Sangild, P. T. (2019). Oral Supplementation With Bovine Colostrum Prevents Septic Shock and Brain Barrier Disruption During Bloodstream Infection in Preterm Newborn Pigs. Shock, 51(3), 337–347. https://doi.org/10.1097/SHK.0000000000001131
Cao, X., Kang, S., Yang, M., Li, W., Wu, S., Han, H., Meng, L., Wu, R., & Yue, X. (2018). Quantitative N -glycoproteomics of milk fat globule membrane in human colostrum and mature milk reveals changes in protein glycosylation during lactation. Food & Function, 9(2), 1163–1172. https://doi.org/10.1039/C7FO01796K
De Moura Bell, J. M. L. N., Cohen, J. L., De Aquino, L. F. M. C., Lee, H., De Melo Silva, V. L., Liu, Y., Domizio, P., & Barile, D. (2018). An integrated bioprocess to recover bovine milk oligosaccharides from colostrum whey permeate. Journal of Food Engineering, 216, 27–35. https://doi.org/10.1016/j.jfoodeng.2017.07.022
Derakhshani, H., Plaizier, J. C., De Buck, J., Barkema, H. W., & Khafipour, E. (2018). Association of bovine major histocompatibility complex (BoLA) gene polymorphism with colostrum and milk microbiota of dairy cows during the first week of lactation. Microbiome, 6(1), 203. https://doi.org/10.1186/s40168-018-0586-1
Dunn, A., Duffy, C., Gordon, A., Morrison, S., Arg?ello, A., Welsh, M., & Earley, B. (2018). Comparison of single radial immunodiffusion and ELISA for the quantification of immunoglobulin G in bovine colostrum, milk and calf sera. Journal of Applied Animal Research, 46(1), 758–765. https://doi.org/10.1080/09712119.2017.1394860
Fischer, A. J., Song, Y., He, Z., Haines, D. M., Guan, L. L., & Steele, M. A. (2018). Effect of delaying colostrum feeding on passive transfer and intestinal bacterial colonization in neonatal male Holstein calves. Journal of Dairy Science, 101(4), 3099–3109. https://doi.org/10.3168/jds.2017-13397
Godden, S. M., Lombard, J. E., & Woolums, A. R. (2019). Colostrum Management for Dairy Calves. Veterinary Clinics of North America: Food Animal Practice, 35(3), 535–556. https://doi.org/10.1016/j.cvfa.2019.07.005
Hammon, H. M., Liermann, W., Frieten, D., & Koch, C. (2020). Review: Importance of colostrum supply and milk feeding intensity on gastrointestinal and systemic development in calves. Animal, 14, s133–s143. https://doi.org/10.1017/S1751731119003148
Hasan, S., Junnikkala, S., Peltoniemi, O., Paulin, L., Lyyski, A., Vuorenmaa, J., & Oliviero, C. (2018). Dietary supplementation with yeast hydrolysate in pregnancy influences colostrum yield and gut microbiota of sows and piglets after birth. PLOS ONE, 13(5), e0197586. https://doi.org/10.1371/journal.pone.0197586
Juhl, S. M., Ye, X., Zhou, P., Li, Y., Iyore, E. O., Zhang, L., Jiang, P., Van Goudoever, J. B., Greisen, G., & Sangild, P. T. (2018). Bovine Colostrum for Preterm Infants in the First Days of Life: A Randomized Controlled Pilot Trial. Journal of Pediatric Gastroenterology & Nutrition, 66(3), 471–478. https://doi.org/10.1097/MPG.0000000000001774
Kandimalla, R., Aqil, F., Alhakeem, S. S., Jeyabalan, J., Tyagi, N., Agrawal, A., Yan, J., Spencer, W., Bondada, S., & Gupta, R. C. (2021). Targeted Oral Delivery of Paclitaxel Using Colostrum-Derived Exosomes. Cancers, 13(15), 3700. https://doi.org/10.3390/cancers13153700
Kedkovid, R., Woonwong, Y., Arunorat, J., Sirisereewan, C., Sangpratum, N., Kesdangsakonwut, S., Tummaruk, P., Teankum, K., Assavacheep, P., Jittimanee, S., & Thanawongnuwech, R. (2018). Porcine circovirus type 3 (PCV3) shedding in sow colostrum. Veterinary Microbiology, 220, 12–17. https://doi.org/10.1016/j.vetmic.2018.04.032
Lago, A., Socha, M., Geiger, A., Cook, D., Silva-del-Río, N., Blanc, C., Quesnell, R., & Leonardi, C. (2018). Efficacy of colostrum replacer versus maternal colostrum on immunological status, health, and growth of preweaned dairy calves. Journal of Dairy Science, 101(2), 1344–1354. https://doi.org/10.3168/jds.2017-13032
Li, M., Li, Q., Kang, S., Cao, X., Zheng, Y., Wu, J., Wu, R., Shao, J., Yang, M., & Yue, X. (2020). Characterization and comparison of lipids in bovine colostrum and mature milk based on UHPLC-QTOF-MS lipidomics. Food Research International, 136, 109490. https://doi.org/10.1016/j.foodres.2020.109490
Liu, Y., Abula, N. M., Wang, Q., Tong, N., Zhang, X., Aisha, A., & Wang, S. (2020). Effect of external diaphragmatic pacing therapy on patients with chronic cor pulmonale: A randomized, controlled trial. Journal of International Medical Research, 48(11), 030006052096583. https://doi.org/10.1177/0300060520965839
Picone, G., Zappaterra, M., Luise, D., Trimigno, A., Capozzi, F., Motta, V., Davoli, R., Nanni Costa, L., Bosi, P., & Trevisi, P. (2018). Metabolomics characterization of colostrum in three sow breeds and its influences on piglets’ survival and litter growth rates. Journal of Animal Science and Biotechnology, 9(1), 23. https://doi.org/10.1186/s40104-018-0237-1
Playford, R. J., & Weiser, M. J. (2021). Bovine Colostrum: Its Constituents and Uses. Nutrients, 13(1), 265. https://doi.org/10.3390/nu13010265
Puppel, K., Go??biewski, M., Grodkowski, G., Slósarz, J., Kunowska-Slósarz, M., Solarczyk, P., ?ukasiewicz, M., Balcerak, M., & Przysucha, T. (2019). Composition and Factors Affecting Quality of Bovine Colostrum: A Review. Animals, 9(12), 1070. https://doi.org/10.3390/ani9121070
Pyo, J., Hare, K., Pletts, S., Inabu, Y., Haines, D., Sugino, T., Guan, L. L., & Steele, M. (2020). Feeding colostrum or a 1:1 colostrum:milk mixture for 3 days postnatal increases small intestinal development and minimally influences plasma glucagon-like peptide-2 and serum insulin-like growth factor-1 concentrations in Holstein bull calves. Journal of Dairy Science, 103(5), 4236–4251. https://doi.org/10.3168/jds.2019-17219
Shivley, C. B., Lombard, J. E., Urie, N. J., Haines, D. M., Sargent, R., Kopral, C. A., Earleywine, T. J., Olson, J. D., & Garry, F. B. (2018). Preweaned heifer management on US dairy operations: Part II. Factors associated with colostrum quality and passive transfer status of dairy heifer calves. Journal of Dairy Science, 101(10), 9185–9198. https://doi.org/10.3168/jds.2017-14008
Song, Y., Malmuthuge, N., Li, F., & Guan, L. L. (2019). Colostrum feeding shapes the hindgut microbiota of dairy calves during the first 12 h of life. FEMS Microbiology Ecology, 95(1). https://doi.org/10.1093/femsec/fiy203
Togo, A. H., Grine, G., Khelaifia, S., Des Robert, C., Brevaut, V., Caputo, A., Baptiste, E., Bonnet, M., Levasseur, A., Drancourt, M., Million, M., & Raoult, D. (2019). Culture of Methanogenic Archaea from Human Colostrum and Milk. Scientific Reports, 9(1), 18653. https://doi.org/10.1038/s41598-019-54759-x
Wu, K., Gao, R., Tian, F., Mao, Y., Wang, B., Zhou, L., Shen, L., Guan, Y., & Cai, M. (2019). Fatty acid positional distribution ( sn -2 fatty acids) and phospholipid composition in Chinese breast milk from colostrum to mature stage. British Journal of Nutrition, 121(1), 65–73. https://doi.org/10.1017/S0007114518002994
Zhao, H., Yan, Y., Liu, Y., Long, L., Xue, H., & Zhao, H. (2022). Bedside critical ultrasound as a key to the diagnosis of obstructive atelectasis complicated with acute cor pulmonale and differentiation from pulmonary embolism: A case report. Journal of Clinical Ultrasound, 50(5), 611–617. https://doi.org/10.1002/jcu.23190
Authors
Copyright (c) 2023 Sonya Lestari Aritonang, Lenny Irmawaty Sirait, Rupdi Lumban Siantar

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.