Prediction of Indonesian Learning Achievement Using Machine Learning Models
Abstract
Background. Student learning achievement is one of the important indicators in assessing the effectiveness of education. Various factors such as student attendance and socioeconomic status have been known to affect learning outcomes. However, the influence of access to technology in the context of education in Indonesia has not been studied in depth. In today's digital era, access to technology is an important aspect that can support or hinder the learning process of students.
Purpose. This study aims to analyze the influence of student attendance, socioeconomic status, and access to technology on student learning achievement. In addition, this study also aims to test the accuracy of machine learning models in predicting student exam results based on these variables.
Method. This study uses a quantitative approach with the application of machine learning models, including linear regression and decision trees. The data used includes students' test scores, attendance levels, socioeconomic status, and access to technology devices and networks.
Results. The results of the analysis showed that student attendance, socioeconomic status, and access to technology had a significant influence on learning achievement. The machine learning model applied is able to predict students' exam results with a high level of accuracy, demonstrating the effectiveness of this approach in educational analysis.
Conclusion. This study emphasizes the importance of external factors, especially access to technology, in predicting student learning achievement. A more inclusive education policy is needed by expanding access to technology and educational facilities, in order to support the equitable distribution of learning quality in all circles.
Full text article
References
st International Convention Proceedings: Computers in Education. (2008). MIPRO 2008 - 31st Intl. Convention Proc.: Comput. Educ., 4. Scopus. https://www.scopus.com/inward/record.uri?eid=2-s2.0-84897596642&partnerID=40&md5=87dd8cb2cc8ba7e8e9a26fe2bf341e21
Ahmed, S. S., El-Basit, A. O. A., Hosny, A. K., Wahba, M. M., Saber, S. A., & Ali, K. A. (2023). Assistive Technology for the Visually Impaired Using Computer Vision and Image Processing. Dalam Lecture. Notes. Data Eng. Commun. Tech. (Vol. 152, hlm. 287–297). Springer Science and Business Media Deutschland GmbH; Scopus. https://doi.org/10.1007/978-3-031-20601-6_26
Alexandrov D.A., Chugunov A.V., Kabanov Y., Koltsova O., Musabirov I., Pashakhin S., Boukhanovsky A.V., & Chugunov A.V. (Ed.). (2022). 6th International Conference on Digital Transformation and Global Society, DTGS 2021. Communications in Computer and Information Science, 1503 CCIS. Scopus. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85124650496&partnerID=40&md5=c536d26dd524916bd27b80d81c87b160
Ali, D. A., Aborizka, M., & Dahroug, A. (2023). Prediction of Student Performance by Using Machine Learning Techniques. Int. Conf. Artif. Intell., Robot. Control, AIRC, 101–105. Scopus.https://doi.org/10.1109/AIRC57904.2023.10303160
Almulla, M. A., & Alamri, M. M. (2021). Using conceptual mapping for learning to affect students’ motivation and academic achievement. Sustainability (Switzerland), 13(7). Scopus. https://doi.org/10.3390/su13074029
Armitage, W. D., Gaspar, A., & Rideout, M. (2007). Remotely accessible sandboxed environment with application to a laboratory course in networking. SIGITE - Proc. ACM Inf. Technol. Educ. Conf., 83–90. Scopus. https://doi.org/10.1145/1324302.1324321
Ayub, A. F. M., Mokhtar, M. Z., Luan, W. S., & Tarmizi, R. A. (2010). A comparison of two different technologies tools in tutoring Calculus. Procedia Soc. Behav. Sci., 2(2), 481–486. Scopus. https://doi.org/10.1016/j.sbspro.2010.03.048
Bondar, V. V., Skvortsova, O. I., Rozhenko, O. D., Darzhaniya, A. D., & Mirzoian, M. V. (2024). The Use of Innovative Pedagogical Technologies to Improve the Effectiveness of Mathematical Training in Specialized Classes. Dalam Alikhanov A., Tchernykh A., Babenko M., & Samoylenko I. (Ed.), Lect. Notes Networks Syst.: Vol. 1044 LNNS (hlm. 485–494). Springer Science and Business Media Deutschland GmbH; Scopus. https://doi.org/10.1007/978-3-031-64010-0_45
Daghestani, L., Ward, R. D., Xu, Z., & Al-Nuaim, H. (2010). Virtual Reality potential role in numeracy concepts using Virtual Manipulatives. AfricaIMSA: IASTED Afr. Conf. Internet Multimedia Syst. Appl., 249–255. Scopus. https://doi.org/10.2316/p.2010.690-011
Duan, X., Pei, B., Ambrose, G. A., Hershkovitz, A., Cheng, Y., & Wang, C. (2024). Towards transparent and trustworthy prediction of student learning achievement by including instructors as co-designers: A case study. Education and Information Technologies, 29(3), 3075–3096. Scopus. https://doi.org/10.1007/s10639-023-11954-8
El Koshiry, A., Eliwa, E., Abd El-Hafeez, T., & Shams, M. Y. (2023). Unlocking the power of blockchain in education: An overview of innovations and outcomes. Blockchain: Research and Applications, 4(4). Scopus. https://doi.org/10.1016/j.bcra.2023.100165
Esakkiammal, S., & Kasturi, K. (2024). Advancing Educational Outcomes with Artificial Intelligence: Challenges, Opportunities, And Future Directions. International Journal of Computational and Experimental Science and Engineering, 10(4), 1749–1756. Scopus. https://doi.org/10.22399/ijcesen.799
George Amalarethinam, D. I., & Emima, A. (2024). A Survey on Tools and Techniques of Classification in Educational Data Mining. Dalam Mahmud M., Ben-Abdallah H., Kaiser M.S., Ahmed M.R., & Zhong N. (Ed.), Commun. Comput. Info. Sci.: Vol. 2065 CCIS (hlm. 95–107). Springer Science and Business Media Deutschland GmbH; Scopus. https://doi.org/10.1007/978-3-031-68639-9_7
Guerrero-Higueras, A. M., Llamas, C. F., González, L. S., Fernández, A. G., Costales, G. E., & González, M. A. C. (2020). Academic success assessment through version control systems. Applied Sciences (Switzerland), 10(4). Scopus. https://doi.org/10.3390/app10041492
Hakim, V. G. A., Yang, S.-H., Wang, J.-H., Lin, H.-H., & Chen, G.-D. (2024). Digital Twins of Pet Robots to Prolong Interdependent Relationships and Effects on Student Learning Performance. IEEE Transactions on Learning Technologies, 17, 1883–1897. Scopus. https://doi.org/10.1109/TLT.2024.3416209
Huang, Y. (2024). An analysis on improving the efficiency of Chinese teaching in colleges based on information fusion technology. Journal of Computational Methods in Sciences and Engineering, 24(4–5), 2283–2299. Scopus. https://doi.org/10.3233/JCM-247446
Islam, Q., & Khan, S. M. F. A. (2024). Understanding deep learning across academic domains: A structural equation modelling approach with a partial least squares approach. International Journal of Innovative Research and Scientific Studies, 7(4), 1389–1407. Scopus. https://doi.org/10.53894/ijirss.v7i4.3408
Jamil, N., & Belkacem, A. N. (2024). Advancing Real-Time Remote Learning: A Novel Paradigm for Cognitive Enhancement Using EEG and Eye-Tracking Analytics. IEEE Access, 12, 93116–93132. Scopus. https://doi.org/10.1109/ACCESS.2024.3422926
Katsarou, E., Wild, F., Sougari, A.-M., & Chatzipanagiotou, P. (2023). A Systematic Review of Voice-based Intelligent Virtual Agents in EFL Education. International Journal of Emerging Technologies in Learning, 18(10), 65–85. Scopus. https://doi.org/10.3991/ijet.v18i10.37723
Khan, M. A., & Kaur, H. (2022). A DNN is Programmed Prediction Scholarly Accomplishment. Dalam Dwivedi R.K., Saxena A.Kr., Khan G., & Bhardwaj S. (Ed.), Proc. Int. Conf. Syst. Model. Adv. Res. Trends, SMART (hlm. 1008–1012). Institute of Electrical and Electronics Engineers Inc.; Scopus. https://doi.org/10.1109/SMART55829.2022.10047123
Koti Mani Kumar Tirumanadham, N. S., Sekhar, T., & Muthal, S. (2024). An analysis of diverse computational models for predicting student achievement on e-learning platforms using machine learning. International Journal of Electrical and Computer Engineering, 14(6), 7013–7021. Scopus. https://doi.org/10.11591/ijece.v14i6.pp7013-7021
Li, T., Ren, W., Xia, Z., & Wu, F. (2023). A Study of Academic Achievement Attribution Analysis Based on Explainable Machine Learning Techniques. IEEE Int. Conf. Educ. Inf. Technol., ICEIT, 114–119. Scopus. https://doi.org/10.1109/ICEIT57125.2023.10107887
Liu, C., Wang, H., & Yuan, Z. (2022). A Method for Predicting the Academic Performances of College Students Based on Education System Data. Mathematics, 10(20). Scopus. https://doi.org/10.3390/math10203737
Lockhart, M. E., Kwok, O.-M., Yoon, M., & Wong, R. (2022). An important component to investigating STEM persistence: The development and validation of the science identity (SciID) scale. International Journal of STEM Education, 9(1). Scopus. https://doi.org/10.1186/s40594-022-00351-1
Mastrantonio, R. (2020a). Experimental application of semi-quantitative methods for the assessment of occupational exposure to hazardous chemicals in research laboratories. Risk Management and Healthcare Policy, 13(Query date: 2023-11-30 23:13:48), 1929–1937. https://doi.org/10.2147/RMHP.S248469
Mastrantonio, R. (2020b). Experimental application of semi-quantitative methods for the assessment of occupational exposure to hazardous chemicals in research laboratories. Risk Management and Healthcare Policy, 13(Query date: 2023-12-14 18:25:27), 1929–1937. https://doi.org/10.2147/RMHP.S248469
Mayo, M. J. (2009). Video games: A route to large-scale STEM education? Science, 323(5910), 79–82. Scopus. https://doi.org/10.1126/science.1166900
Mu, L. (2023). A Brief Analysis of AI-Empowered Foreign Language Education. Dalam Liang Q., Wang W., Mu J., Liu X., & Na Z. (Ed.), Lect. Notes Electr. Eng.: Vol. 871 LNEE (hlm. 409–413). Springer Science and Business Media Deutschland GmbH; Scopus. https://doi.org/10.1007/978-981-99-1256-8_48
Nagy, M., Molontay, R., & Szabó, M. (2019). A web application for predicting academic performance and identifying the contributing factors. Dalam Nagy B.V., Murphy M., Jarvinen H.-M., & Kalman A. (Ed.), SEFI Annu. Conf.: Var. Delect.... Complex. New Norm., Proc. (hlm. 1794–1806). European Society for Engineering Education (SEFI); Scopus. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85077811386&partnerID=40&md5=7022dee3eb65cf6967f30c74466e62b3
Nakhipova, V., Kerimbekov, Y., Umarova, Z., Suleimenova, L., Botayeva, S., Ibashova, A., & Zhumatayev, N. (2024). Use of the Naive Bayes Classifier Algorithm in Machine Learning for Student Performance Prediction. International Journal of Information and Education Technology, 14(1), 92–98. Scopus. https://doi.org/10.18178/ijiet.2024.14.1.2028
Nasa-Ngium, P., Bussaman, S., Nuankaew, W. S., & Nuankaew, P. (2023). Academic Achievement Synthesis to Complete Graduation Strategies for Mathematics Students with Educational Data Mining and Learning Analytics. Dalam Lect. Notes Educ. Technol.: Vol. Part F2953 (hlm. 232–237). Springer Science and Business Media Deutschland GmbH; Scopus. https://doi.org/10.1007/978-981-99-5961-7_30
Nosulenko, V. N. (2021). INTEGRATION ISSUES OF QUALITATIVE AND QUANTITATIVE METHODS IN PSYCHOLOGICAL RESEARCH. Experimental Psychology (Russia), 14(3), 4–16. https://doi.org/10.17759/exppsy.2021140301
Nuankaew, P., Bussaman, S., Nasa-Ngium, P., Sararat, T., & Nuankaew, W. S. (2024). A Compatible Model for Hybrid Learning and Self-regulated Learning During the COVID-19 Pandemic Using Machine Learning Analytics. Dalam Jain S., Mihindukulasooriya N., Janev V., & Shimizu C.M. (Ed.), Lect. Notes Electr. Eng. (Vol. 1258, hlm. 423–433). Springer Science and Business Media Deutschland GmbH; Scopus. https://doi.org/10.1007/978-981-97-7356-5_34
Nurhadiyanto D., Sutopo null, Setiadi B.R., & Pratiwi H. (Ed.). (2020). 2nd International Conference on Vocational Education of Mechanical and Automotive Technology 2019. Dalam J. Phys. Conf. Ser. (Vol. 1446, Nomor 1). Institute of Physics Publishing; Scopus. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85079590449&partnerID=40&md5=a129eab596dd7c3781040360eebaf6df
Pavlenko, V., Ponomarenko, I., Morhulets, O., Fedorchenko, A., & Pylypenko, V. (2023). Use of Information Technologies and Marketing Tools for The Formation of An Educational Platform. Dalam Lytvynenko I. & Lupenko S. (Ed.), CEUR Workshop Proc. (Vol. 3628, hlm. 520–525). CEUR-WS; Scopus. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85184382707&partnerID=40&md5=524c87ef448e43fbb8f00e46148a5013
Rainey, C., O’Regan, T., Matthew, J., Skelton, E., Woznitza, N., Chu, K.-Y., Goodman, S., McConnell, J., Hughes, C., Bond, R., McFadden, S., & Malamateniou, C. (2021). Beauty Is in the AI of the Beholder: Are We Ready for the Clinical Integration of Artificial Intelligence in Radiography? An Exploratory Analysis of Perceived AI Knowledge, Skills, Confidence, and Education Perspectives of UK Radiographers. Frontiers in Digital Health, 3. Scopus. https://doi.org/10.3389/fdgth.2021.739327
Ramasamy, G., Bagula, A., Rajan, A. P., & Rengasamy, P. (2024). Alpha-Bit: An Android App for Enhancing Pattern Recognition using CNN and Sequential Deep Learning. ITU Kaleidoscope: Innov. Digit. Transform. a Sustain. World, ITU K. 2024 ITU Kaleidoscope: Innovation and Digital Transformation for a Sustainable World, ITU K 2024. Scopus. https://doi.org/10.23919/ITUK62727.2024.10772809
Salles, F., Dos Santos, R., & Keskpaik, S. (2020). When didactics meet data science: Process data analysis in large-scale mathematics assessment in France. Large-Scale Assessments in Education, 8(1). Scopus. https://doi.org/10.1186/s40536-020-00085-y
Samarai, B. A. (2024). USE OF BLOCKCHAIN TECHNOLOGY IN EDUCATIONAL FIELD. International Journal on Technical and Physical Problems of Engineering, 15(4), 140–151. Scopus.
Shmalko, O. (2019). Experimental research on development and validation of methods of quantitative determination of flavonoids and essential oil in solid multi-component capsules “uroholum.” ScienceRise: Pharmaceutical Science, 22(6), 43–49. https://doi.org/10.15587/2519-4852.2019.190552
Tang, S. (2019). Experimental Research on Adjustable Speed Drivers Tolerance to Voltage Sags and Quantitative Method Part II: Experiment and Quantification Method. Diangong Jishu Xuebao/Transactions of China Electrotechnical Society, 34(10), 2207–2215. https://doi.org/10.19595/j.cnki.1000-6753.tces.180126
Tao, S. (2019a). Experimental Research on Adjustable Speed Drivers Tolerance to Voltage Sags and Quantitative Method Part I: Mechanism Analysis and Test Method. Diangong Jishu Xuebao/Transactions of China Electrotechnical Society, 34(6), 1273–1281. https://doi.org/10.19595/j.cnki.1000-6753.tces.L80832
Tao, S. (2019b). Experimental Research on Adjustable Speed Drivers Tolerance to Voltage Sags and Quantitative Method Part I: Mechanism Analysis and Test Method. Diangong Jishu Xuebao/Transactions of China Electrotechnical Society, 34(6), 1273–1281. https://doi.org/10.19595/j.cnki.1000-6753.tces.L80832
Wang, H. (2024). An Empirical Study of Data Mining Technology in English Learning Outcome Prediction. International Journal of E-Collaboration, 20(1). Scopus. https://doi.org/10.4018/IJeC.354886
Authors
Copyright (c) 2025 Muh. Safar, Nina Anis

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.