

Badrud Tamam¹, Motik Arisca Dyana²

^{1,2}Universitas Islam Madura, Indonesia

Corresponding Author: Badrud Tamam,	E-mail; <u>badrud207@gmail.com</u>
-------------------------------------	------------------------------------

Article Information:	ABSTRACT
Received November 10, 2	¹⁰²³ Pamekasan, as one of the districts in East Java, is famous for its various
Revised November 19, 20	interesting tourist attractions. As the number of tourists increases, the
Accepted December 17, 2	need for typical Pamekasan souvenirs also increases. This encourages
	souvenir craftsmen to look for efficient ways to distribute their products
	to tourist attractions. One method that can be used is to use Solver Excel
	to determine the shortest nath for sending souvenirs. This research aims
	to determine the shortest path for sending souvenirs from production
	sites to tourist attractions in Demokesen using Solver Excel. The
	sites to tourist attractions in Famekasan using Solver Excel. The
	is data on the distance between an dustion sites and tourist attractions in
	is data on the distance between production sites and tourist attractions in
	Pamekasan. This data was obtained from the Pamekasan Regency
	Tourism and Culture Office. The research results show that Solver
	Excel can be used to determine the shortest route for sending souvenirs
	from production sites to tourist attractions in Pamekasan so that it can
	help souvenir craftsmen to save time and costs in distributing their
	products.
	Keywords: Excel Solver, Distribution, Phortest Path
Journal Homepage	https://journal.ypidathu.or.id/index.php/jcsa
This is an open access artic	le under the CC BY SA license
	https://creativecommons.org/licenses/by-sa/4.0/
How to cite:	Tamam, B., & Dyana, A, M. (2023). Determining the Shortest Path for Souvenin
	Delivery to Tourist Attractions in Pamekasan Using Excel Solver. Journal of Computer
N 111 11	Science Advancements, 1(6). 252-258 https://doi.org/10.70177/jsca.v1i6.1139
Published by:	Yayasan Pendidikan Islam Daarut Thufulah

INTRODUCTION

Pamekasan, a regency in East Java, is famous for its beautiful beach tourism and various typical souvenirs. The beauty of nature and the uniqueness of Madurese culture become the main attraction for tourists visiting Pamekasan. Madurese souvenirs, such as Madurese batik, wood carving crafts, and Madurese accessories, become one of the main attractions for tourists (Adejumobi, 2019). The souvenir entrepreneurs in Pamekasan want to reach as many tourist attractions as possible to increase their sales (Begen, 2019).

However, determining the shortest path for the delivery of souvenirs to various tourist attractions is a challenge. The distance between tourist attractions in Pamekasan varies (Mohanraj, 2023). Souvenir entrepreneurs need to consider distance, travel time, and transportation costs in determining the shortest path, which is important to minimise operational costs and increase profits (Vamsikrishna, 2021).

Excel Solver, an optimisation tool available in Microsoft Excel, can help souvenir entrepreneurs in determining the shortest path (Birch, 2022). Solver Excel can be used to solve a variety of optimisation problems, including the problem of determining the shortest path (Bravo-Sepúlveda, 2023). By using Solver Excel, souvenir entrepreneurs can determine the most efficient souvenir delivery path, thus saving time and costs (Ahmed, 2022).

This research aims to apply Excel Solver in determining the shortest path for sending souvenirs to 10 tourist attractions in Pamekasan. It is hoped that this research can help souvenir entrepreneurs in Pamekasan in improving the efficiency of souvenir delivery and increasing their profits.

RESEARCH METHODOLOGY

The research methodology to determine the shortest path of souvenir delivery to tourist attractions in Pamekasan using Excel Solver can be designed as follows:

Data Collection

The initial step in this research is to collect the necessary data. Relevant data includes the location of tourist attractions in Pamekasan, souvenir marketing locations, the distance between each location (Stoilova, 2020).

Use of Excel Solver

Solver is an Excel add-in that can be used to find the optimal solution of linear programming problems (Sharifian, 2024). The use of Solver involves adjusting the variables and constraints accordingly, then running Solver to find the shortest path that meets the set criteria (Zhang, 2021).

Validation of Results

Once the Solver has provided a solution, it is important to validate the results. This can be done by checking whether the resulting path is indeed the shortest path according to the mathematical calculations done earlier (Massaro, 2021).

Analysis of Results

Finally, the results of this study need to be analysed to evaluate the effectiveness and efficiency of the determined path (Wu, 2021). A sensitivity analysis can also be conducted to understand how changes in the input variables will affect the resulting solution (Sharifian, 2024).

By following this methodology, it is hoped that the research can provide a better understanding of the determination of the shortest path of souvenir delivery to tourist

attractions in Pamekasan using Excel Solver, as well as provide practical guidance for stakeholders involved in the management of souvenir distribution.

RESULT AND DISCUSSION

Data Collection

a) Collect data on geographical coordinates of tourist attractions in Pamekasan from trusted sources (e.g. Google Maps, OpenStreetMap).

b) Calculating the distance between tourist attractions using the Haversine distance formula or online tools.

c) Entering the distance data between tourist attractions into an Excel spreadsheet.

No	Dari	Ke	Jarak	Jalur				
1	x	А	12	0				
2	у	А	4	0				
3	Z	А	9	0				
4	х	В	3	0				
5	у	В	17	0				
6	Z	В	11	0				
7	x	С	16	0				
8	у	С	9	0				
9	Z	С	4	0				
10	x	D	11	0				
11	у	D	15	0				
12	Z	D	5	0				
13	x	E	8	1				
14	у	E	6	0				
15	Z	E	13	0				
Х	= Pengirin	n 1	A= Pantai jumiang					
Y	= Pengirin	n 2	B= Pantai talang siring					
Z	= Pengirim	3	C= Api ta	k kunjung padam				
			D= Bukit brukoh					
			E= Pantai batu kerbu					

Figure 1. Data Obtained

Us of Solver Excel

File	Home	Insert	Page Layo	out Foi	mulas	Data	Review View	v Help Q	Tell me what	t you want	to do			IIIn.	U
Get Communications Get Get Communications Get Communications Ge				ns Ref	Solver	Queries & Connect Parameters es & Connections	tions AL ZA		× Clear		-	Porec	ast	Vingroup X Subtotal	
	*	: ×	$\checkmark f_x$	0							_				
A #							н	1	J						
2 N	o Dari	Ke	Jarak	Jalur											
3 1	x	A	12	0			Node	Constrain							
4 2	y y	A	4	0			A	0	=	1					
5 3	Z	A	9	0			В	0	=	0					
6 4	x	B	3	0			С	0	=	0					
7 5	у	B	17	0			D	0	=	0					
8 6	z	B	11	0			E	-1	=	-1					
9 7	x	С	16	0											
0 8	y y	C	9	0											
1 9	Z	C	4	0											
2 1	0 x	D	11	0											
3 1	1 y	D	15	0			Min Distence	0							
4 1	2 z	D	5	0											
5 1	3 x	E	8	1											
6 1	4 y	E	6	0											
7 1	5 z	E	13	0											
8															
19															
20	X = Pengiri	m 1	A= Pantai	i jumiang											
21	Y= Pengirii	n 2	B= Pantai	talang sir	ing										
22	Z= Pengirin	n 3	C= Api ta	k kunjung	padam										
23			D= Bukit	brukoh											
24			E= Pantai	batu kerb	ny										

Figure 2. Open the sovel programme in excel

Description:

- Column B2: Souvenir sender
- Column C2: Destination tourism
- Column D2: Distance from souvenir sender to tourist attractions
- Column E2: Evacuation route
- Column H2: Node (Series of Paths)
- Column I2: Constraint =SUM(B3:B26,G3,E3:E26)-SUMIF(C3:C26,G3,E3:E26)
- Column K2: Constraint
- Column H10: Min distance =SUMPRODUCT(D3:D26,E3:E26)

Then run the solver:

Figure 3. Solver Process by Entering the Formulas

File Get Data ~	Home From Tex From We From Tab	Insert t/CSV b le/Range t & Transfor	Page Layo	ut Fo ources Connectio	mulas Da ns Refresh All ~	Solver Parameters Set Objective: To: O Max	• Min	\$I\$13 Qualue Of:	0	a de la f	×	st Subtotal Outline
13		\times	√ fx	=SUN	IPRODUCT(D	By Changing Variab	le Cells:					
4						\$E\$3:\$E\$17					<u>+</u>	
No	Dari	Ke	Jarak	Ialur		6 15 m 1 6						Q R
1	x	A	12	0		Subject to the Const	raints:					
2	v	A	4	0		\$1\$4:\$1\$8 = \$K\$4:\$P	(58		A .	Add		
3	z	A	9	0						Channel		
4	x	В	3	0						Change		
5	у	В	17	0						Delete		
6	Z	В	11	0						Devete		
7	x	С	16	0								
8 0	у	С	9	0					<u>R</u> eset All			
19	Z	С	4	0					*	Load/Save		
2 10	X	D	11	0						Toggiane		
3 11	У	D	15	0		Mage Unconstra	ined Variables Non-Ne	gative				
8 12 12	Z	D E	2	0		Select a Solving	Simplex LP			 Options 		
14	A N	E	6	0		Method:						
7 15	7	E	13	0		Coluing Mathed						
8	~		10			Solving Method	-line of the Colu	Dealelance thet are a	and a second second second	and a 10 Circular and		
9						for linear Solver Pr	roblems, and select the	Evolutionary engine for	r Solver problems th	at are non-smooth.	ne	
X = Pengirim 1 A= Pantai jumiang												
1	Y= Pengirim 2 B= Pantai talang siring		ing									
2	Z= Pengirin	3	C= Api ta	k kunjung	padam			(
3			D= Bukit	brukoh		Help			Solve	Close		
•			E= Pantai	batu kerb	uy							

Description:

- Set Objective: \$H\$10
- Equal to: Min
- By Changing Variable Cells: \$E\$3:\$E\$26 (variabel keputusan)
- Subjet to the Constraints: \$E\$3:\$E\$26

Validation of Result

Get From Text/CSV © Recent Sources Get From Web © Existing Connections Data ~ From Table/Range Get & Transform Data					ns Re A	Refresh Queries & Connections All Cueries & Connections Queries & Connections			2↓ K2 Sort Sort & Filter Sort & Filter				Text to Columns 🗟 🗸 🖗 A Data Tools			
	,			J.	-5011	II RODO		7,03.0277	_	_						
4	A	В	С	D	E	F	G	н		1	J	К	L	M	N	
2	No	Dari	Ke	Jarak	Jalur											
3	1	x	A	12	0			Node	С	onstrain	_					
4	2	у	A	4	0			A		0	-	1				
Þ	3	Z	A	9	0			В		0	=	0				
â	4	x	В	3	0			С		0	-	0				
1	5	у	B	17	0			D		0	-	0				
8	6	Z	В	11	0			E		-1	=	-1				
9	7	x	C	16	0											
0	8	у	C	9	0											
1	9	Z	С	4	0											
2	10	x	D	11	0											
3	11	у	D	15	0			Min Distence		8	-					
4	12	Z	D	5	0											
5	13	x	E	8	1											
6	14	у	E	6	0											
7	15	Z	E	13	0											
8																
9	v	Description		A - Dente	leses la sec											
0	A= Pengirim 1 A= Pantai jumiang															
-	Y = Pengirim 2 B= Pantai talang siring			ing												
2	Z	2= Pengirim 3 C= Api tak kunjung pad				padam										
2				E = Dantai	betu korb											
5	E= Pantai batu kerbuy															

Figure 4. Data Results After Solver Process

Analysis of Results

From the solver results, the shortest path obtained is 8 km. In the Excel Solver, the objective function and constraints can be modelled in appropriate cells, by utilising the formulas and logic functions available (Massaro, 2021). After defining the objective

function, constraints, and other parameters, the Excel Solver can be run to find the optimal solution that satisfies the given constraints (Manish, 2023).

One of the main advantages of using Excel Solver in linear programming modelling is its ease of use (Vairavel, 2021). The Excel Solver is integrated with Microsoft Excel, so modelling and analysis can be done directly in an environment that is familiar to the user (Tokgoz, 2019).

CONCLUSION

Based on the research results contained in this assignment, it can be concluded that from the process of determining the shortest path for sending souvenirs to tourist attractions in Pamekasan using Excel Solver, it can be concluded that with a structured approach and using the right analytical tools, we can achieve efficient and optimised solutions.

The steps that include identifying the road network, creating the model in Excel, defining variables and constraints, using the Excel Solver, analysing the results, and finding the shortest path are an integral part of an effective decision-making process.

REFERENCES

- Adejumobi, I. A. (2019). Efficient Utilization of Industrial Power: Demand Side Management Approach. IEEE PES/IAS PowerAfrica Conference: Power Economics and Energy Innovation in Africa, PowerAfrica 2019, Query date: 2024-07-21 12:06:14, 677–681. https://doi.org/10.1109/PowerAfrica.2019.8928817
- Ahmed, M. Z. (2022). Estimation of Weibull Distribution Parameters by Using Excel Solver Tool for Wind Speed Data at Al-Aziziyah, Libya. ELECOM 2022 -Proceedings of the 2022 4th IEEE International Conference on Emerging Trends in Electrical, Electronic and Communications Engineering, Query date: 2024-07-21 12:06:14. https://doi.org/10.1109/ELECOM54934.2022.9965234
- Begen, M. A. (2019). Development of an operational and tactical decision support tool for a Canadian beverage firm: A case study. *European Journal of Industrial Engineering*, 13(2), 245–263. <u>https://doi.org/10.1504/EJIE.2019.098515</u>
- Birch, C. C. (2022). Optimizing cut-off grade considering grade estimation uncertainty—A case study of Witwatersrand gold-producing areas. *Journal of the Southern African Institute of Mining and Metallurgy*, 122(7), 337–346. <u>https://doi.org/10.17159/2411-9717/1403/2022</u>
- Bravo-Sepúlveda, M. (2023). A STOCHASTIC MODEL TO QUANTIFY AND OPTIMIZE THE IMPACT OF OPERATIONAL RISKS ON CORPORATE SUSTAINABILITY USING MONTE CARLO SIMULATION. Polish Journal of Management Studies, 28(2), 59–75. https://doi.org/10.17512/pjms.2023.28.2.04
- Manish, G. V. (2023). Identification of Hotspot of Rape Cases in NCT of Delhi: A Data Science Perspective. *Lecture Notes in Networks and Systems*, 521(Query date: 2024-07-21 12:06:14), 485–496. <u>https://doi.org/10.1007/978-3-031-13150-9_39</u>
- Massaro, F. (2021). An Algorithm for Optimal Sizing of BESS in Smart Islands Energy Communities: The Case of Pantelleria. 21st IEEE International Conference on Environment and Electrical Engineering and 2021 5th IEEE Industrial and

Commercial Power System Europe, EEEIC / I and CPS Europe 2021 -Proceedings, Query date: 2024-07-21 12:06:14. https://doi.org/10.1109/EEEIC/ICPSEurope51590.2021.9584620

- Mohanraj, R. (2023). Bending and Contact Stress Analysis of Helical Gear: A Comparative Study. *Lecture Notes in Mechanical Engineering, Query date:* 2024-07-21 12:06:14, 509–518. https://doi.org/10.1007/978-981-99-1288-9_53
- Sharifian, M. (2024). Feedback control strategy of Fischer–Tropsch process in a micro-GtL plant. *Chemical Engineering Research and Design*, 204(Query date: 2024-07-21 12:06:14), 354–370. <u>https://doi.org/10.1016/j.cherd.2024.02.046</u>
- Stoilova, K. (2020). Optimization of Urban Traffic in City Network. ACM International Conference Proceeding Series, Query date: 2024-07-21 12:06:14, 180–185. <u>https://doi.org/10.1145/3407982.3407998</u>
- Tokgoz, E. (2019). Undergraduate industrial engineering majors' software preferences for solving statistical process control and operations research questions. ASEE Annual Conference and Exposition, Conference Proceedings, Query date: 2024-07-21 12:06:14.

https://api.elsevier.com/content/abstract/scopus_id/85078721648

- Vairavel, P. (2021). Residence time distribution studies and modeling of rotating biological contactor reactor for decolorization of congo red from synthetic dye wastewater. *Desalination and Water Treatment*, 220(Query date: 2024-07-21 12:06:14), 380–391. <u>https://doi.org/10.5004/dwt.2021.26982</u>
- Vamsikrishna, A. (2021). Cost Optimization for Transportation Using Linear Programming. Lecture Notes in Mechanical Engineering, Query date: 2024-07-21 12:06:14, 11–20. https://doi.org/10.1007/978-981-16-0976-3_2
- Wu, M. H. (2021). A NEW APPROACH FOR MODELING EARTHQUAKE MAGNITUDE PROBABILITY DISTRIBUTION. Journal of GeoEngineering, 16(4), 145–154. <u>https://doi.org/10.6310/jog.202112_16(4).3</u>
- Zhang, Y. (2021). Particle size distributions following chewing: Transformation of twodimensional outcome from optical scanning to volume outcome from sieving. *Journal of Food Engineering*, 309(Query date: 2024-07-21 12:06:14). <u>https://doi.org/10.1016/j.jfoodeng.2021.110663</u>

Copyright Holder : © Badrud Tamam et al. (2023).

First Publication Right : © Journal of Computer Science Advancements

This article is under:

