Kuy Learn to Pray Application to Train the Practice of Prayer in Children

Ryan Apriansyah (1), Hamdani Ali Mukti (2), Imam Tabroni (3), Li Jie (4), Guijiao Zou (5)
(1) Sekolah Tinggi Agama Islam Dr. KH. EZ. Muttaqien Purwakarta Jawa Barat, Indonesia,
(2) Sekolah Tinggi Agama Islam Dr. KH. EZ. Muttaqien Purwakarta Jawa Barat, Indonesia,
(3) Sekolah Tinggi Agama Islam Dr. KH. EZ. Muttaqien Purwakarta Jawa Barat, Indonesia,
(4) The University of Tokyo, Japan,
(5) Public universities and colleges, Taiwan, Province of China

Abstract

Background. This research aims to create an android application-based prayer learning media product to train and teach prayer to children. This research uses a type of development research or known as Research & Development (R&D).


Purpose. The development model used in this research refers to the Borg and Gall development model.


Method. The research process begins with a preliminary study to see the problems that occur, the potential for development, determining the literature review relevant to the problems that occur to plan the manufacture of the initial product design, initial product field trials.


Results. , product revision I, main field trials, product revision II, operational field trials.


Conclusion. final product revision and dissemination and implementation of product application. The results of the research on the use of the Kuy Belajar Shalat Application developed in this study with a series of steps and stages of trials can be said to be effective for training children in learning prayers because there is an increase in scores in each trial conducted

Full text article

Generated from XML file

References

Abdar, M., Pourpanah, F., Hussain, S., Rezazadegan, D., Liu, L., Ghavamzadeh, M., Fieguth, P., Cao, X., Khosravi, A., Acharya, U. R., Makarenkov, V., & Nahavandi, S. (2021). A review of uncertainty quantification in deep learning: Techniques, applications and challenges. Information Fusion, 76, 243–297. https://doi.org/10.1016/j.inffus.2021.05.008

Abdelhamid, H. N. (2021). A review on hydrogen generation from the hydrolysis of sodium borohydride. International Journal of Hydrogen Energy, 46(1), 726–765. https://doi.org/10.1016/j.ijhydene.2020.09.186

Aich, S., Chakraborty, S., Sain, M., Lee, H., & Kim, H.-C. (2019). A Review on Benefits of IoT Integrated Blockchain based Supply Chain Management Implementations across Different Sectors with Case Study. 2019 21st International Conference on Advanced Communication Technology (ICACT), 138–141. https://doi.org/10.23919/ICACT.2019.8701910

Ali, F., El-Sappagh, S., Islam, S. M. R., Kwak, D., Ali, A., Imran, M., & Kwak, K.-S. (2020). A smart healthcare monitoring system for heart disease prediction based on ensemble deep learning and feature fusion. Information Fusion, 63, 208–222. https://doi.org/10.1016/j.inffus.2020.06.008

Alkhateeb, J. H. (2020). A Machine Learning Approach for Recognizing the Holy Quran Reciter. International Journal of Advanced Computer Science and Applications, 11(7). https://doi.org/10.14569/IJACSA.2020.0110735

Alzoubi, H., Alshurideh, M., Kurdi, B. A., Akour, I., & Azi, R. (2022). Does BLE technology contribute towards improving marketing strategies, customers’ satisfaction and loyalty? The role of open innovation. International Journal of Data and Network Science, 6(2), 449–460. https://doi.org/10.5267/j.ijdns.2021.12.009

Ante, L. (2021). Blockchain and energy: A bibliometric analysis and review. Renewable and Sustainable Energy Reviews, 137(Query date: 2023-06-08 17:04:34). https://doi.org/10.1016/j.rser.2020.110597

Anwar, S., Bascou, N. A., Menekse, M., & Kardgar, A. (2019). A Systematic Review of Studies on Educational Robotics. Journal of Pre-College Engineering Education Research (J-PEER), 9(2). https://doi.org/10.7771/2157-9288.1223

Caena, F., & Redecker, C. (2019). Aligning teacher competence frameworks to 21st century challenges: The case for the European Digital Competence Framework for Educators ( DIGCOMPEDU) . European Journal of Education, 54(3), 356–369. https://doi.org/10.1111/ejed.12345

Cao, B., Wang, Y., Wen, D., Liu, W., Wang, J., Fan, G., Ruan, L., Song, B., Cai, Y., Wei, M., Li, X., Xia, J., Chen, N., Xiang, J., Yu, T., Bai, T., Xie, X., Zhang, L., Li, C., … Wang, C. (2020). A Trial of Lopinavir–Ritonavir in Adults Hospitalized with Severe Covid-19. New England Journal of Medicine, 382(19), 1787–1799. https://doi.org/10.1056/NEJMoa2001282

Cerezo, R., Calderón, V., & Romero, C. (2019). A holographic mobile-based application for practicing pronunciation of basic English vocabulary for Spanish speaking children. International Journal of Human-Computer Studies, 124, 13–25. https://doi.org/10.1016/j.ijhcs.2018.11.009

Chen, L.-K., Woo, J., Assantachai, P., Auyeung, T.-W., Chou, M.-Y., Iijima, K., Jang, H. C., Kang, L., Kim, M., Kim, S., Kojima, T., Kuzuya, M., Lee, J. S. W., Lee, S. Y., Lee, W.-J., Lee, Y., Liang, C.-K., Lim, J.-Y., Lim, W. S., … Arai, H. (2020). Asian Working Group for Sarcopenia: 2019 Consensus Update on Sarcopenia Diagnosis and Treatment. Journal of the American Medical Directors Association, 21(3), 300-307.e2. https://doi.org/10.1016/j.jamda.2019.12.012

Chen, M., Challita, U., Saad, W., Yin, C., & Debbah, M. (2019). Artificial Neural Networks-Based Machine Learning for Wireless Networks: A Tutorial. IEEE Communications Surveys & Tutorials, 21(4), 3039–3071. https://doi.org/10.1109/COMST.2019.2926625

Coutts, D. S., Matthews, W. A., & Hubbard, S. M. (2019). Assessment of widely used methods to derive depositional ages from detrital zircon populations. Geoscience Frontiers, 10(4), 1421–1435. https://doi.org/10.1016/j.gsf.2018.11.002

Ferlay, J., Colombet, M., Soerjomataram, I., Parkin, D. M., Piñeros, M., Znaor, A., & Bray, F. (2021). Cancer statistics for the year 2020: An overview. International Journal of Cancer, 149(4), 778–789. https://doi.org/10.1002/ijc.33588

Germani, L., Mecarelli, V., Baruffa, G., Rugini, L., & Frescura, F. (2019). An IoT Architecture for Continuous Livestock Monitoring Using LoRa LPWAN. Electronics, 8(12), 1435. https://doi.org/10.3390/electronics8121435

Hamzah, N., Abd Halim, N. D., Hassan, M. H., & Ariffin, A. (2019). Android Application for Children to Learn Basic Solat. International Journal of Interactive Mobile Technologies (iJIM), 13(07), 69. https://doi.org/10.3991/ijim.v13i07.10758

Heidenreich, P. A., Bozkurt, B., Aguilar, D., Allen, L. A., Byun, J. J., Colvin, M. M., Deswal, A., Drazner, M. H., Dunlay, S. M., Evers, L. R., Fang, J. C., Fedson, S. E., Fonarow, G. C., Hayek, S. S., Hernandez, A. F., Khazanie, P., Kittleson, M. M., Lee, C. S., Link, M. S., … Yancy, C. W. (2022). 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation, 145(18). https://doi.org/10.1161/CIR.0000000000001063

Magnavita, N., Soave, P. M., & Antonelli, M. (2021). A One-Year Prospective Study of Work-Related Mental Health in the Intensivists of a COVID-19 Hub Hospital. International Journal of Environmental Research and Public Health, 18(18), 9888. https://doi.org/10.3390/ijerph18189888

Marshall, J. C., Murthy, S., Diaz, J., Adhikari, N. K., Angus, D. C., Arabi, Y. M., Baillie, K., Bauer, M., Berry, S., Blackwood, B., Bonten, M., Bozza, F., Brunkhorst, F., Cheng, A., Clarke, M., Dat, V. Q., De Jong, M., Denholm, J., Derde, L., … Zhang, J. (2020). A minimal common outcome measure set for COVID-19 clinical research. The Lancet Infectious Diseases, 20(8), e192–e197. https://doi.org/10.1016/S1473-3099(20)30483-7

Mazza, C., Ricci, E., Biondi, S., Colasanti, M., Ferracuti, S., Napoli, C., & Roma, P. (2020). A Nationwide Survey of Psychological Distress among Italian People during the COVID-19 Pandemic: Immediate Psychological Responses and Associated Factors. International Journal of Environmental Research and Public Health, 17(9), 3165. https://doi.org/10.3390/ijerph17093165

Mohammed, A., Harris, I., & Govindan, K. (2019). A hybrid MCDM-FMOO approach for sustainable supplier selection and order allocation. International Journal of Production Economics, 217, 171–184. https://doi.org/10.1016/j.ijpe.2019.02.003

Mulangu, S., Dodd, L. E., Davey, R. T., Tshiani Mbaya, O., Proschan, M., Mukadi, D., Lusakibanza Manzo, M., Nzolo, D., Tshomba Oloma, A., Ibanda, A., Ali, R., Coulibaly, S., Levine, A. C., Grais, R., Diaz, J., Lane, H. C., Muyembe-Tamfum, J.-J., & The Palm Writing Group. (2019). A Randomized, Controlled Trial of Ebola Virus Disease Therapeutics. New England Journal of Medicine, 381(24), 2293–2303. https://doi.org/10.1056/NEJMoa1910993

Natarajan, Y., Murugesan, P. K., Mohan, M., & Liyakath Ali Khan, S. A. (2020). Abrasive Water Jet Machining process: A state of art of review. Journal of Manufacturing Processes, 49, 271–322. https://doi.org/10.1016/j.jmapro.2019.11.030

Paradis, E., & Schliep, K. (2019). ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics, 35(3), 526–528. https://doi.org/10.1093/bioinformatics/bty633

Rahimzadeh, M., Attar, A., & Sakhaei, S. M. (2021). A fully automated deep learning-based network for detecting COVID-19 from a new and large lung CT scan dataset. Biomedical Signal Processing and Control, 68, 102588. https://doi.org/10.1016/j.bspc.2021.102588

Ren, Z., Sun, S., Sun, R., Cui, G., Hong, L., Rao, B., Li, A., Yu, Z., Kan, Q., & Mao, Z. (2020). A Metal–Polyphenol?Coordinated Nanomedicine for Synergistic Cascade Cancer Chemotherapy and Chemodynamic Therapy. Advanced Materials, 32(6), 1906024. https://doi.org/10.1002/adma.201906024

Shi, X.-L., Zou, J., & Chen, Z.-G. (2020). Advanced Thermoelectric Design: From Materials and Structures to Devices. Chemical Reviews, 120(15), 7399–7515. https://doi.org/10.1021/acs.chemrev.0c00026

Tang, N., Li, D., Wang, X., & Sun, Z. (2020). Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. Journal of Thrombosis and Haemostasis, 18(4), 844–847. https://doi.org/10.1111/jth.14768

Tu, Y.-F., Chien, C.-S., Yarmishyn, A. A., Lin, Y.-Y., Luo, Y.-H., Lin, Y.-T., Lai, W.-Y., Yang, D.-M., Chou, S.-J., Yang, Y.-P., Wang, M.-L., & Chiou, S.-H. (2020). A Review of SARS-CoV-2 and the Ongoing Clinical Trials. International Journal of Molecular Sciences, 21(7), 2657. https://doi.org/10.3390/ijms21072657

Tulbure, A.-A., Tulbure, A.-A., & Dulf, E.-H. (2022). A review on modern defect detection models using DCNNs – Deep convolutional neural networks. Journal of Advanced Research, 35, 33–48. https://doi.org/10.1016/j.jare.2021.03.015

Twenge, J. M., Cooper, A. B., Joiner, T. E., Duffy, M. E., & Binau, S. G. (2019). Age, period, and cohort trends in mood disorder indicators and suicide-related outcomes in a nationally representative dataset, 2005–2017. Journal of Abnormal Psychology, 128(3), 185–199. https://doi.org/10.1037/abn0000410

Verdoni, L., Mazza, A., Gervasoni, A., Martelli, L., Ruggeri, M., Ciuffreda, M., Bonanomi, E., & D’Antiga, L. (2020). An outbreak of severe Kawasaki-like disease at the Italian epicentre of the SARS-CoV-2 epidemic: An observational cohort study. The Lancet, 395(10239), 1771–1778. https://doi.org/10.1016/S0140-6736(20)31103-X

Wang, S., Tuor, T., Salonidis, T., Leung, K. K., Makaya, C., He, T., & Chan, K. (2019). Adaptive Federated Learning in Resource Constrained Edge Computing Systems. IEEE Journal on Selected Areas in Communications, 37(6), 1205–1221. https://doi.org/10.1109/JSAC.2019.2904348

West, H., McCleod, M., Hussein, M., Morabito, A., Rittmeyer, A., Conter, H. J., Kopp, H.-G., Daniel, D., McCune, S., Mekhail, T., Zer, A., Reinmuth, N., Sadiq, A., Sandler, A., Lin, W., Ochi Lohmann, T., Archer, V., Wang, L., Kowanetz, M., & Cappuzzo, F. (2019). Atezolizumab in combination with carboplatin plus nab-paclitaxel chemotherapy compared with chemotherapy alone as first-line treatment for metastatic non-squamous non-small-cell lung cancer (IMpower130): A multicentre, randomised, open-label, phase 3 trial. The Lancet Oncology, 20(7), 924–937. https://doi.org/10.1016/S1470-2045(19)30167-6

Zhang, L., Song, J., Gao, A., Chen, J., Bao, C., & Ma, K. (2019). Be Your Own Teacher: Improve the Performance of Convolutional Neural Networks via Self Distillation. 2019 IEEE/CVF International Conference on Computer Vision (ICCV), 3712–3721. https://doi.org/10.1109/ICCV.2019.00381

Authors

Ryan Apriansyah
ryanapriansyah5@gmail.com (Primary Contact)
Hamdani Ali Mukti
Imam Tabroni
Li Jie
Guijiao Zou
Apriansyah, R., Mukti, H. A., Tabroni, I., Jie, L. ., & Zou, G. (2023). Kuy Learn to Pray Application to Train the Practice of Prayer in Children. Journal Emerging Technologies in Education, 1(3), 177–186. https://doi.org/10.55849/jete.v1i3.369

Article Details

Simulated Learning in STEM Education: Bridging Theory and Practice Through AR

Titik Haryanti, Dina Destari, Noura Rizqyaannisa Hidayat, Agung Yuliyanto Nugroho, Achmad Nashrul...
Abstract View : 275
Download :25

The Effect of Using Digital Learning Applications on Student Achievement in Elementary Schools

Ngr. Putu Raka Novandra Asta, Aribowo Aribowo, Memed Saputra, Najmuddin Najmuddin, Pahmi Pahmi
Abstract View : 784
Download :545

Product Development of Ayo Belajar Tayamum Application

Ijah Siti Khodijah, Hikmah Nur Fajriyah, Lusi Sapitri, Imam Tabroni
Abstract View : 177
Download :133

Development of E-modules as a Learning Resource for Prayer Practice

Gugun Ismawan, Imam Tabroni, Goldwag Megan, Bouyea Jonathan
Abstract View : 265
Download :77