Teacher Pedagogical Competence In A Neuroscience Perspective: A Systematic Review And Meta-Analysis
Abstract
This research is a systematic review of the literature that discusses teacher pedagogical competence in a neuroscience perspective. Overview systematically carried out For deepen knowledge, know the results of previous research, and clarify research problems in context pedagogic competence. Overview systematic done with using the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) method. PRISMA help para writer And researcher in compile A systematic reviews Where contains guidelines for what items must be in an article. Collected literature Derived from articles published in 2018 to 2023. Based on the results of reading whole content text, there is 19 Which made as article selected. Study This try conducted a literature study on teacher pedagogical competence in a neuroscience perspective.
Full text article
References
Abaunza, G., & Rodríguez-Conde, M. J. (2016). Bibliographic Review on web applications used to learn a foreign language. Dalam Garcia-Penalvo F.J. (Ed.), ACM Int. Conf. Proc. Ser. (Vol. 02-04-November-2016, hlm. 229–234). Association for Computing Machinery; Scopus. https://doi.org/10.1145/3012430.3012522
Alm, A., & Nkomo, L. M. (2020). Chatbot experiences of informal language learners: A sentiment analysis. International Journal of Computer-Assisted Language Learning and Teaching, 10(4), 51–65. Scopus. https://doi.org/10.4018/IJCALLT.2020100104
Andias, R. (2018). The effects of pain neuroscience education and exercise on pain, muscle endurance, catastrophizing and anxiety in adolescents with chronic idiopathic neck pain: A school-based pilot, randomized and controlled study. Physiotherapy Theory and Practice, 34(9), 682–691. https://doi.org/10.1080/09593985.2018.1423590
Arioli, M. (2018). Social Cognition through the Lens of Cognitive and Clinical Neuroscience. BioMed Research International, 2018(Query date: 2023-03-04 07:13:35). https://doi.org/10.1155/2018/4283427
Barbey, A. (2018). Network Neuroscience Theory of Human Intelligence. Trends in Cognitive Sciences, 22(1), 8–20. https://doi.org/10.1016/j.tics.2017.10.001
Bassett, D. S. (2018). On the nature and use of models in network neuroscience. Nature Reviews Neuroscience, 19(9), 566–578. https://doi.org/10.1038/s41583-018-0038-8
Batubara, H. H., & Supena, A. (2018). EDUCATIONAL NEUROSCIENCE DALAM PENDIDIKAN DASAR. Jurnal Pendidikan Dasar. https://doi.org/doi.org/10.21009/JPD.092.013
Brika, S. K. M., Chergui, K., Algamdi, A., Musa, A. A., & Zouaghi, R. (2022). E-Learning Research Trends in Higher Education in Light of COVID-19: A Bibliometric Analysis. Frontiers in Psychology, 12, 762819. https://doi.org/10.3389/fpsyg.2021.762819
Callon, M., Courtial, J. P., & Laville, F. (1991). Co-word analysis as a tool for describing the network of interactions between basic and technological research: The case of polymer chemsitry. Scientometrics, 22(1), 155–205. https://doi.org/10.1007/BF02019280
Coch, D. (2018). Reflections on Neuroscience in Teacher Education. Peabody Journal of Education, 93(3), 309–319. https://doi.org/10.1080/0161956X.2018.1449925
Cooper, R. A., & Simons, J. S. (2019). Exploring the neurocognitive basis of episodic recollection in autism. Psychonomic Bulletin & Review, 26(1), 163–181. https://doi.org/10.3758/s13423-018-1504-z
Darling-Hammond, L., Flook, L., Cook-Harvey, C., Barron, B., & Osher, D. (2020). Implications for educational practice of the science of learning and development. Applied Developmental Science, 24(2), 97–140. https://doi.org/10.1080/10888691.2018.1537791
Dehghan, H., Esmaeili, S. V., Paridokht, F., Javadzade, N., & Jalali, M. (2022). Assessing the students’ readiness for E-Learning during the Covid-19 pandemic: A case study. Heliyon, 8(8), e10219. https://doi.org/10.1016/j.heliyon.2022.e10219
Dubinsky, J. M., Guzey, S. S., Schwartz, M. S., Roehrig, G., MacNabb, C., Schmied, A., Hinesley, V., Hoelscher, M., Michlin, M., Schmitt, L., Ellingson, C., Chang, Z., & Cooper, J. L. (2019). Contributions of Neuroscience Knowledge to Teachers and Their Practice. The Neuroscientist, 25(5), 394–407. https://doi.org/10.1177/1073858419835447
Feiler, J. B., & Stabio, M. E. (2018). Three pillars of educational neuroscience from three decades of literature. Trends in Neuroscience and Education, 13, 17–25. https://doi.org/10.1016/j.tine.2018.11.001
Hackel, L. (2018). Computational neuroscience approaches to social cognition. Current Opinion in Psychology, 24(Query date: 2023-03-04 07:13:35), 92–97. https://doi.org/10.1016/j.copsyc.2018.09.001
Ibáñez, A., García, A. M., Esteves, S., Yoris, A., Muñoz, E., Reynaldo, L., Pietto, M. L., Adolfi, F., & Manes, F. (2018). Social neuroscience: Undoing the schism between neurology and psychiatry. Social Neuroscience, 13(1), 1–39. https://doi.org/10.1080/17470919.2016.1245214
Kendal, R. L., Boogert, N. J., Rendell, L., Laland, K. N., Webster, M., & Jones, P. L. (2018). Social Learning Strategies: Bridge-Building between Fields. Trends in Cognitive Sciences, 22(7), 651–665. https://doi.org/10.1016/j.tics.2018.04.003
Li, L., Gow, A. D. I., & Zhou, J. (2020). The Role of Positive Emotions in Education: A Neuroscience Perspective. Mind, Brain, and Education, 14(3), 220–234. https://doi.org/10.1111/mbe.12244
Lombard, F., Schneider, D. K., Merminod, M., & Weiss, L. (2020). Balancing Emotion and Reason to Develop Critical Thinking About Popularized Neurosciences. Science & Education, 29(5), 1139–1176. https://doi.org/10.1007/s11191-020-00154-2
Merigó, J. M., & Yang, J. B. (2017). A bibliometric analysis of operations research and management science. Omega (United Kingdom), 73, 37–48. https://doi.org/10.1016/j.omega.2016.12.004
Mishra, P., & Koehler, M. J. (2006). Technological Pedagogical Content Knowledge: A Framework for Teacher Knowledge.
Ng, B. (2018). The Neuroscience of Growth Mindset and Intrinsic Motivation. Brain Sciences, 8(2), 20. https://doi.org/10.3390/brainsci8020020
Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., & Moher, D. (2021). Updating guidance for reporting systematic reviews: Development of the PRISMA 2020 statement. Journal of Clinical Epidemiology, 134, 103–112. https://doi.org/10.1016/j.jclinepi.2021.02.003
Pearson, J. (2019). The human imagination: The cognitive neuroscience of visual mental imagery. Nature Reviews Neuroscience, 20(10), 624–634. https://doi.org/10.1038/s41583-019-0202-9
Pinti, P. (2020). The present and future use of functional near-infrared spectroscopy (Fnirs) for cognitive neuroscience. Annals of the New York Academy of Sciences, 1464(1), 5–29. https://doi.org/10.1111/nyas.13948
Redcay, E., & Schilbach, L. (2019). Using second-person neuroscience to elucidate the mechanisms of social interaction. Nature Reviews Neuroscience, 20(8), 495–505. https://doi.org/10.1038/s41583-019-0179-4
Reis, M. A. F., Favretto, J., Favretto, N. M., Favretto, L. M. H., & dos Santos, R. P. (2022). Knowledge management in the classroom using Mendeley technology. Journal of Academic Librarianship, 48(4), 102486. https://doi.org/10.1016/j.acalib.2021.102486
Rey-Martí, A., Ribeiro-Soriano, D., & Palacios-Marqués, D. (2016). A bibliometric analysis of social entrepreneurship. Journal of Business Research, 69(5), 1651–1655. https://doi.org/10.1016/j.jbusres.2015.10.033
Richards, B. A., Lillicrap, T. P., Beaudoin, P., Bengio, Y., Bogacz, R., Christensen, A., Clopath, C., Costa, R. P., de Berker, A., Ganguli, S., Gillon, C. J., Hafner, D., Kepecs, A., Kriegeskorte, N., Latham, P., Lindsay, G. W., Miller, K. D., Naud, R., Pack, C. C., … Kording, K. P. (2019). A deep learning framework for neuroscience. Nature Neuroscience, 22(11), 1761–1770. https://doi.org/10.1038/s41593-019-0520-2
Scheidt, R. J. (2015). Marian Diamond: The “Mitochondrial Eve” of Successful Aging. The Gerontologist, 55(1), 171–172. https://doi.org/10.1093/geront/gnu124
Schwartz, M. S., Hinesley, V., Chang, Z., & Dubinsky, J. M. (2019). Neuroscience knowledge enriches pedagogical choices. Teaching and Teacher Education, 83, 87–98. https://doi.org/10.1016/j.tate.2019.04.002
Selcuk, A. A. (2019). A Guide for Systematic Reviews: PRISMA. Turkish Archives of Otorhinolaryngology, 57(1), 57–58. https://doi.org/10.5152/tao.2019.4058
Singh, S., Singh, U. S., & Nermend, M. (2022). Decision analysis of e-learning in bridging digital divide for education dissemination. Procedia Computer Science, 207, 1970–1980. https://doi.org/10.1016/j.procs.2022.09.256
The Campbell Collaboration. (2020). Campbell systematic reviews: Policies and guidelines Table of contents Conflict of Interest. December, 1–48.
Vaughn, A. R., Brown, R. D., & Johnson, M. L. (2020). Understanding Conceptual Change and Science Learning through Educational Neuroscience. Mind, Brain, and Education, 14(2), 82–93. https://doi.org/10.1111/mbe.12237
Yu, D., & Shi, S. (2015). Researching the development of Atanassov intuitionistic fuzzy set: Using a citation network analysis. Applied Soft Computing Journal, 32, 189–198. https://doi.org/10.1016/j.asoc.2015.03.027
Authors
Copyright (c) 2023 Saiin Saiin, Heman Hiroyuki, Atsushi Kawachi

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.