Use of ARIAS Model (Assurance, Relevance, Interest, Assessment, Satisfaction) on Speech Learning
Downloads
Background. The effectiveness of oral corrective feedback (OCF) in language learning is influenced by learners’ comprehension and response to various OCF techniques. Therefore, it is essential for teachers to consider learners’ preferences for OCF strategies.
Purpose. this study aims to investigate the use of ARIAS Model on speech learning. This research will explore the effectiveness of this approach in helping learners overcome challenges in public speaking and improve their speaking skills with more confidence and conviction.
Method. This research used a qualitative method with a descriptive approach. Data collection techniques included interviews, observations, and questionnaires filled out by 21 students.
Results. The results showed that the use of the ARIAS model significantly improved students’ clarity (85%), intonation (80%), and expression (90%) in speech. In addition, 95% of students gave positive responses to the ARIAS model, indicating its acceptance and effectiveness in speech learning.
Conclusion. This study concludes that the ARIAS model is a comprehensive and effective approach to develop public speaking skills, help students overcome psychological barriers, and improve their speech skills with more confidence and convincing. However, technical challenges such as technological infrastructure must be overcome to ensure optimal implementation. The findings support the importance of integrating the ARIAS model in the Indonesian language learning curriculum to improve students’ communication skills.
Chen, J., Yu, H., Bobet, A., & Yuan, Y. (2020). Shaking table tests of transition tunnel connecting TBM and drill-and-blast tunnels. Tunnelling and Underground Space Technology, 96, 103197. https://doi.org/10.1016/j.tust.2019.103197
Doyle, L., McCabe, C., Keogh, B., Brady, A., & McCann, M. (2020). An overview of the qualitative descriptive design within nursing research. Journal of Research in Nursing, 25(5), 443–455. https://doi.org/10.1177/1744987119880234
Elia, G., Margherita, A., & Passiante, G. (2020). Digital entrepreneurship ecosystem: How digital technologies and collective intelligence are reshaping the entrepreneurial process. Technological Forecasting and Social Change, 150, 119791. https://doi.org/10.1016/j.techfore.2019.119791
Esaulova, E., Das, S., Singh, D. K., Choreño-Parra, J. A., Swain, A., Arthur, L., Rangel-Moreno, J., Ahmed, M., Singh, B., Gupta, A., Fernández-López, L. A., De La Luz Garcia-Hernandez, M., Bucsan, A., Moodley, C., Mehra, S., García-Latorre, E., Zuniga, J., Atkinson, J., Kaushal, D., … Khader, S. A. (2021). The immune landscape in tuberculosis reveals populations linked to disease and latency. Cell Host & Microbe, 29(2), 165-178.e8. https://doi.org/10.1016/j.chom.2020.11.013
Gleitz, H. F. E., Dugourd, A. J. F., Leimkühler, N. B., Snoeren, I. A. M., Fuchs, S. N. R., Menzel, S., Ziegler, S., Kröger, N., Triviai, I., Büsche, G., Kreipe, H., Banjanin, B., Pritchard, J. E., Hoogenboezem, R., Bindels, E. M., Schumacher, N., Rose-John, S., Elf, S., Saez-Rodriguez, J., … Schneider, R. K. (2020). Increased CXCL4 expression in hematopoietic cells links inflammation and progression of bone marrow fibrosis in MPN. Blood, 136(18), 2051–2064. https://doi.org/10.1182/blood.2019004095
Hwang, G.-J., & Chang, C.-Y. (2023). A review of opportunities and challenges of chatbots in education. Interactive Learning Environments, 31(7), 4099–4112. https://doi.org/10.1080/10494820.2021.1952615
Jeremic, D., Navarro-López, J. D., & Jiménez-Díaz, L. (2023). Efficacy and safety of anti-amyloid-? monoclonal antibodies in current Alzheimer’s disease phase III clinical trials: A systematic review and interactive web app-based meta-analysis. Ageing Research Reviews, 90, 102012. https://doi.org/10.1016/j.arr.2023.102012
Ji, B. (2020). Survey on the Internet of Vehicles: Network Architectures and Applications. IEEE Communications Standards Magazine, 4(1), 34–41. https://doi.org/10.1109/MCOMSTD.001.1900053
Ji, J., Wang, C.-W., Gao, Y., & Zhang, L. (2021). Probabilistic investigation of the seismic displacement of earth slopes under stochastic ground motion: A rotational sliding block analysis. Canadian Geotechnical Journal, 58(7), 952–968. https://doi.org/10.1139/cgj-2020-0252
Linares, C. (2020). A new integrative perspective on early warning systems for health in the context of climate change. Environmental Research, 187(Query date: 2024-06-05 09:16:36). https://doi.org/10.1016/j.envres.2020.109623
McAuley, G. E., Yiu, G., Chang, P. C., Newby, G. A., Campo-Fernandez, B., Fitz-Gibbon, S. T., Wu, X., Kang, S.-H. L., Garibay, A., Butler, J., Christian, V., Wong, R. L., Everette, K. A., Azzun, A., Gelfer, H., Seet, C. S., Narendran, A., Murguia-Favela, L., Romero, Z., … Kohn, D. B. (2023). Human T cell generation is restored in CD3? severe combined immunodeficiency through adenine base editing. Cell, 186(7), 1398-1416.e23. https://doi.org/10.1016/j.cell.2023.02.027
Mohan, S., A, J., Abugabah, A., M, A., Kumar Singh, S., Kashif Bashir, A., & Sanzogni, L. (2022). An approach to forecast impact of Covid?19 using supervised machine learning model. Software: Practice and Experience, 52(4), 824–840. https://doi.org/10.1002/spe.2969
Ruiz, J. B., & Bell, R. A. (2021). Predictors of intention to vaccinate against COVID-19: Results of a nationwide survey. Vaccine, 39(7), 1080–1086. https://doi.org/10.1016/j.vaccine.2021.01.010
Villain, N., Planche, V., & Levy, R. (2022). High-clearance anti-amyloid immunotherapies in Alzheimer’s disease. Part 1: Meta-analysis and review of efficacy and safety data, and medico-economical aspects. Revue Neurologique, 178(10), 1011–1030. https://doi.org/10.1016/j.neurol.2022.06.012
White, C. M. (2019). A Review of Human Studies Assessing Cannabidiol’s (CBD) Therapeutic Actions and Potential. The Journal of Clinical Pharmacology, 59(7), 923–934. https://doi.org/10.1002/jcph.1387
Xu, C., Jiang, Z.-B., Shao, L., Zhao, Z.-M., Fan, X.-X., Sui, X., Yu, L.-L., Wang, X.-R., Zhang, R.-N., Wang, W.-J., Xie, Y.-J., Zhang, Y.-Z., Nie, X.-W., Xie, C., Huang, J.-M., Wang, J., Wang, J., Leung, E. L.-H., & Wu, Q.-B. (2023). ?-Elemene enhances erlotinib sensitivity through induction of ferroptosis by upregulating lncRNA H19 in EGFR-mutant non-small cell lung cancer. Pharmacological Research, 191, 106739. https://doi.org/10.1016/j.phrs.2023.106739
Yadav, M., Sakib, M. N., Nirjhar, E. H., Feng, K., Behzadan, A. H., & Chaspari, T. (2022). Exploring Individual Differences of Public Speaking Anxiety in Real-Life and Virtual Presentations. IEEE Transactions on Affective Computing, 13(3), 1168–1182. https://doi.org/10.1109/TAFFC.2020.3048299
Yin, J. (2020). Synthesis Strategies of Porous Carbon for Supercapacitor Applications. Small Methods, 4(3). https://doi.org/10.1002/smtd.201900853
Zafar, S. A., Zaidi, S. S.-A., Gaba, Y., Singla-Pareek, S. L., Dhankher, O. P., Li, X., Mansoor, S., & Pareek, A. (2020). Engineering abiotic stress tolerance via CRISPR/ Cas-mediated genome editing. Journal of Experimental Botany, 71(2), 470–479. https://doi.org/10.1093/jxb/erz476
Zhu, Y., Liang, J., Gao, C., Wang, A., Xia, J., Hong, C., Zhong, Z., Zuo, Z., Kim, J., Ren, H., Li, S., Wang, Q., Zhang, F., & Wang, J. (2021). Multifunctional ginsenoside Rg3-based liposomes for glioma targeting therapy. Journal of Controlled Release, 330, 641–657. https://doi.org/10.1016/j.jconrel.2020.12.036
Copyright (c) 2024 Bonafetura Niamonio Ziliwu, Wecan Kartika Hidayati Gea, Arozatulo Bawamenewi, Agung Harapan Harefa

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.