Development of Quantum Noise-Based Quantum Random Number Generator (QRNG)

Yang Xiang (1), Wang Jing (2), Sun Wei (3)
(1) Beijing Normal University, China,
(2) Nanjing University, China,
(3) Beijing Institute of Technology, China

Abstract

The background of this research focuses on the development of a quantum noise-based Quantum Random Number Generator (QRNG) to generate random numbers that are safer and more efficient compared to conventional methods. Quantum fluctuation-based QRNG has the potential to generate more unpredictable numbers, improving security in cryptographic and simulation applications. The purpose of this research is to develop a QRNG system that can generate high-quality random numbers with various experimental settings and conditions. The method used is an experiment measuring quantum fluctuations through a photon detector to generate a random number based on quantum noise, followed by statistical testing to test the quality of the randomness. The results show that quantum noise-based QRNG is able to generate random numbers with better quality than conventional random number generators, with p-values that indicate very high random uncertainty. In addition, these QRNGs can operate at various photon intensities without compromising the random quality produced. The conclusion of this study is that quantum noise-based QRNG offers a safer and more efficient solution in generating random numbers for applications that require high randomness. Further research is needed to improve efficiency and overcome implementation obstacles in the real world.


 

Full text article

Generated from XML file

References

Avesani, M. (2021). Semi-Device-Independent Heterodyne-Based Quantum Random-Number Generator. Physical Review Applied, 15(3). https://doi.org/10.1103/PhysRevApplied.15.034034

Ball, H. (2021). Software tools for quantum control: Improving quantum computer performance through noise and error suppression. Quantum Science and Technology, 6(4). https://doi.org/10.1088/2058-9565/abdca6

Cao, C. (2021). Noise-Assisted Quantum Autoencoder. Physical Review Applied, 15(5). https://doi.org/10.1103/PhysRevApplied.15.054012

Cheng, J. (2022). Mutually testing source-device-independent quantum random number generator. Photonics Research, 10(3), 646–652. https://doi.org/10.1364/PRJ.444853

Chowdhury, S. (2022). Physical security in the post-quantum era: A survey on side-channel analysis, random number generators, and physically unclonable functions. Journal of Cryptographic Engineering, 12(3), 267–303. https://doi.org/10.1007/s13389-021-00255-w

Cincio, L. (2021). Machine Learning of Noise-Resilient Quantum Circuits. PRX Quantum, 2(1). https://doi.org/10.1103/PRXQuantum.2.010324

Doda, M. (2021). Quantum Key Distribution Overcoming Extreme Noise: Simultaneous Subspace Coding Using High-Dimensional Entanglement. Physical Review Applied, 15(3). https://doi.org/10.1103/PhysRevApplied.15.034003

Gehring, T. (2021). Homodyne-based quantum random number generator at 2.9 Gbps secure against quantum side-information. Nature Communications, 12(1). https://doi.org/10.1038/s41467-020-20813-w

Gerry, C. C. (2022). Proposal for a quantum random number generator using coherent light and a non-classical observable. Journal of the Optical Society of America B: Optical Physics, 39(4), 1068–1074. https://doi.org/10.1364/JOSAB.441210

Gill, S. L. (2020). Qualitative Sampling Methods. Journal of Human Lactation, 36(4), 579–581. https://doi.org/10.1177/0890334420949218

Gras, G. (2021). Quantum Entropy Model of an Integrated Quantum-Random-Number-Generator Chip. Physical Review Applied, 15(5). https://doi.org/10.1103/PhysRevApplied.15.054048

Gyenis, A. (2021). Moving beyond the Transmon: Noise-Protected Superconducting Quantum Circuits. PRX Quantum, 2(3). https://doi.org/10.1103/PRXQuantum.2.030101

Han, J., Xu, K., Yan, Q., Sui, W., Zhang, H., Wang, S., Zhang, Z., Wei, Z., & Han, F. (2022). Qualitative and quantitative evaluation of Flos Puerariae by using chemical fingerprint in combination with chemometrics method. Journal of Pharmaceutical Analysis, 12(3), 489–499. https://doi.org/10.1016/j.jpha.2021.09.003

Hann, C. T. (2021). Resilience of Quantum Random Access Memory to Generic Noise. PRX Quantum, 2(2). https://doi.org/10.1103/PRXQuantum.2.020311

Hu, X. M. (2021). Pathways for Entanglement-Based Quantum Communication in the Face of High Noise. Physical Review Letters, 127(11). https://doi.org/10.1103/PhysRevLett.127.110505

Iavich, M. (2021). Novel Quantum Random Number Generator for Cryptographical Applications. 2020 IEEE International Conference on Problems of Infocommunications Science and Technology, PIC S and T 2020 - Proceedings, Query date: 2024-11-30 07:33:52, 727–732. https://doi.org/10.1109/PICST51311.2020.9467951

Ji, H., Qin, W., Yuan, Z., & Meng, F. (2021). Qualitative and quantitative recognition method of drug-producing chemicals based on SnO2 gas sensor with dynamic measurement and PCA weak separation. Sensors and Actuators B: Chemical, 348, 130698. https://doi.org/10.1016/j.snb.2021.130698

Jiulin, S., Quntao, Z., Xiaojin, G., & Jisheng, X. (2021). Quantitative Evaluation of Top Coal Caving Methods at the Working Face of Extra?Thick Coal Seams Based on the Random Medium Theory. Advances in Civil Engineering, 2021(1), 5528067. https://doi.org/10.1155/2021/5528067

Kavulich, J. T. (2021). Searching for evidence of algorithmic randomness and incomputability in the output of quantum random number generators. Physics Letters, Section A: General, Atomic and Solid State Physics, 388(Query date: 2024-11-30 07:33:52). https://doi.org/10.1016/j.physleta.2020.127032

Li, Y. (2021). Quantum random number generator using a cloud superconducting quantum computer based on source-independent protocol. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-03286-9

Lin, X. (2022). Imperfection-insensitivity quantum random number generator with untrusted daily illumination. Optics Express, 30(14), 25474–25485. https://doi.org/10.1364/OE.460907

Liu, W. B. (2021). Homodyne Detection Quadrature Phase Shift Keying Continuous-Variable Quantum key Distribution with High Excess Noise Tolerance. PRX Quantum, 2(4). https://doi.org/10.1103/PRXQuantum.2.040334

Lough, J. (2021). First Demonstration of 6 dB Quantum Noise Reduction in a Kilometer Scale Gravitational Wave Observatory. Physical Review Letters, 126(4). https://doi.org/10.1103/PhysRevLett.126.041102

Lu, Z. (2021). Quantum random number generator with discarding-boundary-bin measurement and multi-interval sampling. Optics Express, 29(8), 12440–12453. https://doi.org/10.1364/OE.419756

Mahendran, M., Lizotte, D., & Bauer, G. R. (2022). Quantitative methods for descriptive intersectional analysis with binary health outcomes. SSM - Population Health, 17, 101032. https://doi.org/10.1016/j.ssmph.2022.101032

Pain, P. (2022). Quantum Random Number Generators for Cryptography: Design and Evaluation. Lecture Notes in Electrical Engineering, 786(Query date: 2024-11-30 07:33:52), 315–322. https://doi.org/10.1007/978-981-16-4035-3_28

Petrov, M. (2022). Independent quality assessment of a commercial quantum random number generator. EPJ Quantum Technology, 9(1). https://doi.org/10.1140/epjqt/s40507-022-00136-z

Rahman, A. U. (2021). Quantum correlations of tripartite entangled states under Gaussian noise. Quantum Information Processing, 20(9). https://doi.org/10.1007/s11128-021-03231-9

Salehi, R. (2022). Hybrid Hadamard and controlled-Hadamard based quantum random number generators in IBM QX. Physica Scripta, 97(6). https://doi.org/10.1088/1402-4896/ac698b

Shakhovoy, R. (2021). Fast and compact VCSEL-based quantum random number generator. Journal of Physics: Conference Series, 1984(1). https://doi.org/10.1088/1742-6596/1984/1/012005

Shao, Y. (2021). Phase noise model for continuous-variable quantum key distribution using a local local oscillator. Physical Review A, 104(3). https://doi.org/10.1103/PhysRevA.104.032608

Sun, J. (2021). Mitigating Realistic Noise in Practical Noisy Intermediate-Scale Quantum Devices. Physical Review Applied, 15(3). https://doi.org/10.1103/PhysRevApplied.15.034026

Toroš, M. (2021). Relative acceleration noise mitigation for nanocrystal matter-wave interferometry: Applications to entangling masses via quantum gravity. Physical Review Research, 3(2). https://doi.org/10.1103/PhysRevResearch.3.023178

Urbanek, M. (2021). Mitigating Depolarizing Noise on Quantum Computers with Noise-Estimation Circuits. Physical Review Letters, 127(27). https://doi.org/10.1103/PhysRevLett.127.270502

Valle-Miñón, M. (2022). Quantum random number generator based on polarization switching in gain-switched VCSELs. Optics Continuum, 1(10), 2156–2166. https://doi.org/10.1364/OPTCON.464530

Wang, H. (2022). QuantumNAS: Noise-Adaptive Search for Robust Quantum Circuits. Proceedings - International Symposium on High-Performance Computer Architecture, 2022(Query date: 2024-11-30 00:35:27), 692–708. https://doi.org/10.1109/HPCA53966.2022.00057

Wang, S. (2021). Noise-induced barren plateaus in variational quantum algorithms. Nature Communications, 12(1). https://doi.org/10.1038/s41467-021-27045-6

Xu, M. (2022). Taming Quantum Noise for Efficient Low Temperature Simulations of Open Quantum Systems. Physical Review Letters, 129(23). https://doi.org/10.1103/PhysRevLett.129.230601

Zhang, J. W. (2021). Single-Atom Verification of the Noise-Resilient and Fast Characteristics of Universal Nonadiabatic Noncyclic Geometric Quantum Gates. Physical Review Letters, 127(3). https://doi.org/10.1103/PhysRevLett.127.030502

Zhao, F. (2021). Quantum battery of interacting spins with environmental noise. Physical Review A, 103(3). https://doi.org/10.1103/PhysRevA.103.033715

Authors

Yang Xiang
yangxiang@gmail.com (Primary Contact)
Wang Jing
Sun Wei
Xiang, Y., Jing, W., & Wei, S. (2024). Development of Quantum Noise-Based Quantum Random Number Generator (QRNG). Journal of Tecnologia Quantica, 1(4), 195–205. https://doi.org/10.70177/quantica.v1i4.1682

Article Details