Quantum Gravity and Its Implications for Cosmology

Farid Akhmedov (1), Gulnar Guliyeva (2), Rania Al-Baker (3)
(1) Khazar University, Azerbaijan,
(2) ADA University, Azerbaijan,
(3) Weill Cornell Medicine-Qatar, Qatar

Abstract

The background of this research focuses on the confluence of two major theories in physics, namely quantum mechanics and general relativity, which are very important in explaining gravity at the quantum scale and cosmology. The purpose of this study is to investigate the relationship between quantum gravity theory and its implications for cosmological phenomena, especially related to singularities and enormous models of the universe. The method used in this study is a comparative analysis of various existing theories of quantum gravity, including string theory and quantum loop gravity, as well as a literature review on the application of these theories in cosmology. The results show that although various theories have been developed, there is not yet a clear consensus on how to integrate quantum gravity into the broader cosmological model. The study also revealed a huge gap in the experiments that could confirm these theories, which slowed down our understanding of gravity at the quantum scale. The conclusion of this study is the importance of further research in experiments and theories to bring together the principles of quantum and general relativity, which is expected to lead to a new, more comprehensive model of cosmology and the universe.


 

Full text article

Generated from XML file

References

Afrin, M., Vagnozzi, S., & Ghosh, S. G. (2023). Tests of Loop Quantum Gravity from the Event Horizon Telescope Results of Sgr A*. The Astrophysical Journal, 944(2), 149. https://doi.org/10.3847/1538-4357/acb334

Bajardi, F., & Capozziello, S. (2023). Minisuperspace quantum cosmology in f(Q) gravity. The European Physical Journal C, 83(6), 531. https://doi.org/10.1140/epjc/s10052-023-11703-8

Barvinsky, A. O., & Kolganov, N. (2024). Nonequilibrium Schwinger-Keldysh formalism for density matrix states: Analytic properties and implications in cosmology. Physical Review D, 109(2), 025004. https://doi.org/10.1103/PhysRevD.109.025004

Bhattacharya, S., Mohanty, S., & Parashari, P. (2021). Implications of the NANOGrav result on primordial gravitational waves in nonstandard cosmologies. Physical Review D, 103(6), 063532. https://doi.org/10.1103/PhysRevD.103.063532

Brown, A. R., Gharibyan, H., Leichenauer, S., Lin, H. W., Nezami, S., Salton, G., Susskind, L., Swingle, B., & Walter, M. (2023). Quantum Gravity in the Lab. I. Teleportation by Size and Traversable Wormholes. PRX Quantum, 4(1), 010320. https://doi.org/10.1103/PRXQuantum.4.010320

Byrne, R., Morales, M. F., Hazelton, B., Li, W., Barry, N., Beardsley, A. P., Joseph, R., Pober, J., Sullivan, I., & Trott, C. (2019). Fundamental Limitations on the Calibration of Redundant 21 cm Cosmology Instruments and Implications for HERA and the SKA. The Astrophysical Journal, 875(1), 70. https://doi.org/10.3847/1538-4357/ab107d

Caputa, P., & Magan, J. M. (2019). Quantum Computation as Gravity. Physical Review Letters, 122(23), 231302. https://doi.org/10.1103/PhysRevLett.122.231302

Carney, D., Stamp, P. C. E., & Taylor, J. M. (2019). Tabletop experiments for quantum gravity: A user’s manual. Classical and Quantum Gravity, 36(3), 034001. https://doi.org/10.1088/1361-6382/aaf9ca

Castellano, A., Herráez, A., & Ibáñez, L. E. (2023). The emergence proposal in quantum gravity and the species scale. Journal of High Energy Physics, 2023(6), 47. https://doi.org/10.1007/JHEP06(2023)047

Christodoulou, M., Di Biagio, A., Aspelmeyer, M., Brukner, ?., Rovelli, C., & Howl, R. (2023). Locally Mediated Entanglement in Linearized Quantum Gravity. Physical Review Letters, 130(10), 100202. https://doi.org/10.1103/PhysRevLett.130.100202

Cotler, J., Jensen, K., & Maloney, A. (2020). Low-dimensional de Sitter quantum gravity. Journal of High Energy Physics, 2020(6), 48. https://doi.org/10.1007/JHEP06(2020)048

Croker, K. S., & Weiner, J. L. (2019). Implications of Symmetry and Pressure in Friedmann Cosmology. I. Formalism. The Astrophysical Journal, 882(1), 19. https://doi.org/10.3847/1538-4357/ab32da

Damour, T. (2020). Classical and quantum scattering in post-Minkowskian gravity. Physical Review D, 102(2), 024060. https://doi.org/10.1103/PhysRevD.102.024060

Dong, X., Harlow, D., & Marolf, D. (2019). Flat entanglement spectra in fixed-area states of quantum gravity. Journal of High Energy Physics, 2019(10), 240. https://doi.org/10.1007/JHEP10(2019)240

Esteban, I., & Salvado, J. (2021). Long range interactions in cosmology: Implications for neutrinos. Journal of Cosmology and Astroparticle Physics, 2021(05), 036. https://doi.org/10.1088/1475-7516/2021/05/036

Fehre, J., Litim, D. F., Pawlowski, J. M., & Reichert, M. (2023). Lorentzian Quantum Gravity and the Graviton Spectral Function. Physical Review Letters, 130(8), 081501. https://doi.org/10.1103/PhysRevLett.130.081501

Grohs, E., & Balantekin, A. B. (2023). Implications on cosmology from Dirac neutrino magnetic moments. Physical Review D, 107(12), 123502. https://doi.org/10.1103/PhysRevD.107.123502

Harlow, D., & Ooguri, H. (2021). Symmetries in Quantum Field Theory and Quantum Gravity. Communications in Mathematical Physics, 383(3), 1669–1804. https://doi.org/10.1007/s00220-021-04040-y

Hassan, S., Lovell, C. C., Madau, P., Huertas-Company, M., Somerville, R. S., Burkhart, B., Dixon, K. L., Feldmann, R., Starkenburg, T. K., Wu, J. F., Jespersen, C. K., Gelfand, J. D., & Bera, A. (2023). JWST Constraints on the UV Luminosity Density at Cosmic Dawn: Implications for 21 cm Cosmology. The Astrophysical Journal Letters, 958(1), L3. https://doi.org/10.3847/2041-8213/ad0239

Jensen, K., Sorce, J., & Speranza, A. J. (2023). Generalized entropy for general subregions in quantum gravity. Journal of High Energy Physics, 2023(12), 20. https://doi.org/10.1007/JHEP12(2023)020

Krisnanda, T., Tham, G. Y., Paternostro, M., & Paterek, T. (2020). Observable quantum entanglement due to gravity. Npj Quantum Information, 6(1), 12. https://doi.org/10.1038/s41534-020-0243-y

Marshman, R. J., Mazumdar, A., & Bose, S. (2020). Locality and entanglement in table-top testing of the quantum nature of linearized gravity. Physical Review A, 101(5), 052110. https://doi.org/10.1103/PhysRevA.101.052110

Mertens, T. G., Simón, J., & Wong, G. (2023). A proposal for 3d quantum gravity and its bulk factorization. Journal of High Energy Physics, 2023(6), 134. https://doi.org/10.1007/JHEP06(2023)134

Nezami, S., Lin, H. W., Brown, A. R., Gharibyan, H., Leichenauer, S., Salton, G., Susskind, L., Swingle, B., & Walter, M. (2023). Quantum Gravity in the Lab. II. Teleportation by Size and Traversable Wormholes. PRX Quantum, 4(1), 010321. https://doi.org/10.1103/PRXQuantum.4.010321

Odintsov, S. D., & Paul, T. (2023). A non-singular generalized entropy and its implications on bounce cosmology. Physics of the Dark Universe, 39, 101159. https://doi.org/10.1016/j.dark.2022.101159

Park, C. F., Allys, E., Villaescusa-Navarro, F., & Finkbeiner, D. (2023). Quantification of High-dimensional Non-Gaussianities and Its Implication to Fisher Analysis in Cosmology. The Astrophysical Journal, 946(2), 107. https://doi.org/10.3847/1538-4357/acbe3b

Pastén, E., Galvez, S., & Cárdenas, V. H. (2024). Approximations for the divergence of the reconstructed local large-scale structure velocity field and its possible implications for Cosmology. Physics of the Dark Universe, 43, 101385. https://doi.org/10.1016/j.dark.2023.101385

Qu, F. J., Sherwin, B. D., Madhavacheril, M. S., Han, D., Crowley, K. T., Abril-Cabezas, I., Ade, P. A. R., Aiola, S., Alford, T., Amiri, M., Amodeo, S., An, R., Atkins, Z., Austermann, J. E., Battaglia, N., Battistelli, E. S., Beall, J. A., Bean, R., Beringue, B., … Zheng, K. (2024). The Atacama Cosmology Telescope: A Measurement of the DR6 CMB Lensing Power Spectrum and Its Implications for Structure Growth. The Astrophysical Journal, 962(2), 112. https://doi.org/10.3847/1538-4357/acfe06

Rajeev, K., & Shankaranarayanan, S. (2023). Quantum Structure of Space-time: Implications for Black Holes and Cosmology. Resonance, 28(3), 355–370. https://doi.org/10.1007/s12045-023-1560-1

Sharif, M., Gul, M. Z., & Hashim, I. (2024). Theoretical insights and implications of bouncing cosmology in $$f(mathcal {R},textrm{T}^2)$$ theory. The European Physical Journal C, 84(10), 1094. https://doi.org/10.1140/epjc/s10052-024-13473-3

Singh, A., Raushan, R., Chaubey, R., Mandal, S., & Mishra, K. C. (2022). Lagrangian formulation and implications of barotropic fluid cosmologies. International Journal of Geometric Methods in Modern Physics, 19(07), 2250107. https://doi.org/10.1142/S0219887822501079

Stray, B., Lamb, A., Kaushik, A., Vovrosh, J., Rodgers, A., Winch, J., Hayati, F., Boddice, D., Stabrawa, A., Niggebaum, A., Langlois, M., Lien, Y.-H., Lellouch, S., Roshanmanesh, S., Ridley, K., De Villiers, G., Brown, G., Cross, T., Tuckwell, G., … Holynski, M. (2022). Quantum sensing for gravity cartography. Nature, 602(7898), 590–594. https://doi.org/10.1038/s41586-021-04315-3

Wang, K., & Huang, Q.-G. (2020). Implications for cosmology from ground-based Cosmic Microwave Background observations. Journal of Cosmology and Astroparticle Physics, 2020(06), 045–045. https://doi.org/10.1088/1475-7516/2020/06/045

Yang, Z. (2019). The quantum gravity dynamics of near extremal black holes. Journal of High Energy Physics, 2019(5), 205. https://doi.org/10.1007/JHEP05(2019)205

Zhang, C., Ma, Y., & Yang, J. (2023). Black hole image encoding quantum gravity information. Physical Review D, 108(10), 104004. https://doi.org/10.1103/PhysRevD.108.104004

Authors

Farid Akhmedov
faridakhmedov@gmail.com (Primary Contact)
Gulnar Guliyeva
Rania Al-Baker
Akhmedov, F., Guliyeva, G., & Al-Baker, R. (2025). Quantum Gravity and Its Implications for Cosmology. Journal of Tecnologia Quantica, 2(2), 96–104. https://doi.org/10.70177/quantica.v2i2.1963

Article Details