New Challenges in Compressed Matter Physics: Future Research Projections
Abstract
Compressed Matter Physics has become an increasingly important field in understanding the properties of matter under extreme conditions, such as those found inside giant planets, neutron stars, and in experiments with ultra-intense lasers. However, although there has been progress in the understanding of compressed matter, there are still major challenges that need to be overcome in understanding the behavior of matter under these extreme conditions. This research aims to explore new challenges in the physics of compressed matter and identify future research projections that can overcome these challenges as well as to improve understanding of the properties of matter under extreme conditions and develop potential applications in various fields, including astronomy, nuclear physics, and materials engineering. This research method involves analysis of the latest literature in the field of compressed matter physics, as well as discussion and collaboration with experts in the scientific community. The results show that there are several major challenges in understanding the physics of compressed matter, including a deeper understanding of the behavior of matter at very high pressures and temperatures, as well as the development of more sophisticated technologies to measure and model these extreme conditions. In addition, we also identify several future research projections that can address these challenges, including the development of new experimental techniques, the development of more sophisticated theoretical models, and the use of more powerful energy sources to achieve extreme conditions. higher. The conclusions of this study highlight the importance of continuing to explore the world of compressed matter to understand the properties of matter under extreme conditions. By identifying key challenges and future research projections, we hope to inspire continued research in this field and advance understanding of the universe at extreme scales.
Full text article
References
Agarwal, K. (2023). The Compressed Baryonic Matter (CBM) Experiment at FAIR – Physics, Status and Prospects. Physica Scripta. https://doi.org/10.1088/1402-4896/acbca7
Agarwal, P., Sharma, S., & Matta, P. (2022). Big Data Technologies in UAV’s Traffic Management System: Importance, Benefits, Challenges and Applications. In R. Rawat, A. M. Sowjanya, S. I. Patel, V. Jaiswal, I. Khan, & A. Balaram (Eds.), Autonomous Vehicles Volume 1 (1st ed., pp. 181–201). Wiley. https://doi.org/10.1002/9781119871989.ch10
Assenza, S., & Mezzenga, R. (2019). Soft condensed matter physics of foods and macronutrients. Nature Reviews Physics, 1(9), 551–566. https://doi.org/10.1038/s42254-019-0077-8
Ávila, C., Flórez, A., Gurrola, A., Julson, D., & Starko, S. (2020). Connecting particle physics and cosmology: Measuring the dark matter relic density in compressed supersymmetry models at the LHC. Physics of the Dark Universe, 27, 100430. https://doi.org/10.1016/j.dark.2019.100430
Backes, K. M., Palken, D. A., Kenany, S. A., Brubaker, B. M., Cahn, S. B., Droster, A., Hilton, G. C., Ghosh, S., Jackson, H., Lamoreaux, S. K., Leder, A. F., Lehnert, K. W., Lewis, S. M., Malnou, M., Maruyama, R. H., Rapidis, N. M., Simanovskaia, M., Singh, S., Speller, D. H., … Wang, H. (2021). A quantum enhanced search for dark matter axions. Nature, 590(7845), 238–242. https://doi.org/10.1038/s41586-021-03226-7
Biekötter, T., & Olea-Romacho, M. O. (2021). Reconciling Higgs physics and pseudo-Nambu-Goldstone dark matter in the S2HDM using a genetic algorithm. Journal of High Energy Physics, 2021(10), 215. https://doi.org/10.1007/JHEP10(2021)215
Bihlmayer, G., Noël, P., Vyalikh, D. V., Chulkov, E. V., & Manchon, A. (2022). Rashba-like physics in condensed matter. Nature Reviews Physics, 4(10), 642–659. https://doi.org/10.1038/s42254-022-00490-y
Biswas, B., Char, P., Nandi, R., & Bose, S. (2021). Towards mitigation of apparent tension between nuclear physics and astrophysical observations by improved modeling of neutron star matter. Physical Review D, 103(10), 103015. https://doi.org/10.1103/PhysRevD.103.103015
Calibbi, L., Li, T., Li, Y., & Zhu, B. (2020). Simple model for large CP violation in charm decays, B-physics anomalies, muon g ? 2 and dark matter. Journal of High Energy Physics, 2020(10), 70. https://doi.org/10.1007/JHEP10(2020)070
Drachsler, H., Hoel, T., Scheffel, M., Kismihók, G., Berg, A., Ferguson, R., Chen, W., Cooper, A., & Manderveld, J. (2015). Ethical and privacy issues in the application of learning analytics. Proceedings of the Fifth International Conference on Learning Analytics And Knowledge, 390–391. https://doi.org/10.1145/2723576.2723642
East, M. (2021). What do beginning teachers make of task-based language teaching? A comparative re-production of East (2014). Language Teaching, 54(4), 552–566. https://doi.org/10.1017/S026144481900048X
Esmeryan, K. D., Lazarov, Y., Stamenov, G. S., & Chaushev, T. A. (2020). When condensed matter physics meets biology: Does superhydrophobicity benefiting the cryopreservation of human spermatozoa? Cryobiology, 92, 263–266. https://doi.org/10.1016/j.cryobiol.2019.10.004
Flores-Livas, J. A., Boeri, L., Sanna, A., Profeta, G., Arita, R., & Eremets, M. (2020). A perspective on conventional high-temperature superconductors at high pressure: Methods and materials. Physics Reports, 856, 1–78. https://doi.org/10.1016/j.physrep.2020.02.003
Fu, Y., Yu, H., Zhang, X., Malgaretti, P., Kishore, V., & Wang, W. (2022). Microscopic Swarms: From Active Matter Physics to Biomedical and Environmental Applications. Micromachines, 13(2), 295. https://doi.org/10.3390/mi13020295
Guo, T., Zheng, X., & Palffy-Muhoray, P. (2023). Symmetry arguments and the totalitarian principle in the physics of liquid crystals and other condensed matter systems. Liquid Crystals, 50(7–10), 1449–1460. https://doi.org/10.1080/02678292.2023.2190173
Gutiérrez-Luna, E., Carvente, B., Jaramillo, V., Barranco, J., Escamilla-Rivera, C., Espinoza, C., Mondragón, M., & Núñez, D. (2022). Scalar field dark matter with two components: Combined approach from particle physics and cosmology. Physical Review D, 105(8), 083533. https://doi.org/10.1103/PhysRevD.105.083533
Jewett, A. I., Stelter, D., Lambert, J., Saladi, S. M., Roscioni, O. M., Ricci, M., Autin, L., Maritan, M., Bashusqeh, S. M., Keyes, T., Dame, R. T., Shea, J.-E., Jensen, G. J., & Goodsell, D. S. (2021). Moltemplate: A Tool for Coarse-Grained Modeling of Complex Biological Matter and Soft Condensed Matter Physics. Journal of Molecular Biology, 433(11), 166841. https://doi.org/10.1016/j.jmb.2021.166841
Jizba, P., & Lambiase, G. (2022). Tsallis cosmology and its applications in dark matter physics with focus on IceCube high-energy neutrino data. The European Physical Journal C, 82(12), 1123. https://doi.org/10.1140/epjc/s10052-022-11113-2
Joanny, J.-F., & Indekeu, J. O. (2023). Statistical physics of active matter, cell division and cell aggregation. Physica A: Statistical Mechanics and Its Applications, 631, 129314. https://doi.org/10.1016/j.physa.2023.129314
Kolar, P., Grbi?, M. S., & Hrabar, S. (2019). Sensitivity Enhancement of NMR Spectroscopy Receiving Chain Used in Condensed Matter Physics. Sensors, 19(14), 3064. https://doi.org/10.3390/s19143064
Kolomeisky, E. B. (2019). Natural analog to cosmology in basic condensed matter physics. Physical Review B, 100(14), 140301. https://doi.org/10.1103/PhysRevB.100.140301
Koltover, V. K. (2019). Radiative Aspects in Physics of Liquid Matter: Stable Magnetic Isotopes as New Trend in Anti-radiation Defense. In L. A. Bulavin & L. Xu (Eds.), Modern Problems of the Physics of Liquid Systems (Vol. 223, pp. 301–312). Springer International Publishing. https://doi.org/10.1007/978-3-030-21755-6_12
Liu, X., & Hersam, M. C. (2019). 2D materials for quantum information science. Nature Reviews Materials, 4(10), 669–684. https://doi.org/10.1038/s41578-019-0136-x
Malespina, A., Schunn, C. D., & Singh, C. (2022). Whose ability and growth matter? Gender, mindset and performance in physics. International Journal of STEM Education, 9(1), 28. https://doi.org/10.1186/s40594-022-00342-2
Mitridate, A., Trickle, T., Zhang, Z., & Zurek, K. M. (2023). Snowmass white paper: Light dark matter direct detection at the interface with condensed matter physics. Physics of the Dark Universe, 40, 101221. https://doi.org/10.1016/j.dark.2023.101221
Musser, G. (2022). Emergence in Condensed Matter Physics. In G. Musser, Emergence in Condensed Matter and Quantum Gravity (pp. 11–43). Springer International Publishing. https://doi.org/10.1007/978-3-031-09895-6_2
Nuñez-Castiñeyra, A., Nezri, E., Mollitor, P., Devriendt, J., & Teyssier, R. (2023). Cosmological simulations of the same spiral galaxy: Connecting the dark matter distribution of the host halo with the subgrid baryonic physics. Journal of Cosmology and Astroparticle Physics, 2023(05), 012. https://doi.org/10.1088/1475-7516/2023/05/012
Pedersen, M. T., & Vilgis, T. A. (2019). Soft matter physics meets the culinary arts: From polymers to jellyfish. International Journal of Gastronomy and Food Science, 16, 100135. https://doi.org/10.1016/j.ijgfs.2019.100135
Planinic, M., Boone, W. J., Susac, A., & Ivanjek, L. (2019). Rasch analysis in physics education research: Why measurement matters. Physical Review Physics Education Research, 15(2), 020111. https://doi.org/10.1103/PhysRevPhysEducRes.15.020111
Plotnitsky, A. (2021). Reality Without Realism: Matter, Thought, and Technology in Quantum Physics. Springer International Publishing. https://doi.org/10.1007/978-3-030-84578-0
Raaijmakers, G., Riley, T. E., Watts, A. L., Greif, S. K., Morsink, S. M., Hebeler, K., Schwenk, A., Hinderer, T., Nissanke, S., Guillot, S., Arzoumanian, Z., Bogdanov, S., Chakrabarty, D., Gendreau, K. C., Ho, W. C. G., Lattimer, J. M., Ludlam, R. M., & Wolff, M. T. (2019). A NICER View of PSR J0030+0451: Implications for the Dense Matter Equation of State. The Astrophysical Journal Letters, 887(1), L22. https://doi.org/10.3847/2041-8213/ab451a
Ueda, K., Sokell, E., Schippers, S., Aumayr, F., Sadeghpour, H., Burgdörfer, J., Lemell, C., Tong, X.-M., Pfeifer, T., Calegari, F., Palacios, A., Martin, F., Corkum, P., Sansone, G., Gryzlova, E. V., Grum-Grzhimailo, A. N., Piancastelli, M. N., Weber, P. M., Steinle, T., … Tanaka, K. A. (2019). Roadmap on photonic, electronic and atomic collision physics: I. Light–matter interaction. Journal of Physics B: Atomic, Molecular and Optical Physics, 52(17), 171001. https://doi.org/10.1088/1361-6455/ab26d7
Vissani, F. (2021). What Is Matter According to Particle Physics, and Why Try to Observe Its Creation in a Lab? Universe, 7(3), 61. https://doi.org/10.3390/universe7030061
Wang, G., Liu, Y., Yan, Z., Chen, D., Fan, J., & Ghezzehei, T. A. (2023). Soil physics matters for the land–water–food–climate nexus and sustainability. European Journal of Soil Science, 74(6), e13444. https://doi.org/10.1111/ejss.13444
Xu, Y., Zhang, W., & Tian, C. (2023). Recent advances on applications of NV ? magnetometry in condensed matter physics. Photonics Research, 11(3), 393. https://doi.org/10.1364/PRJ.471266
Zhang, W., Li, T., & Yin, X. (2023). The Z resonance, inelastic dark matter, and new physics anomalies in the Simple Extension of the Standard Model (SESM) with general scalar potential. The European Physical Journal C, 83(8), 725. https://doi.org/10.1140/epjc/s10052-023-11884-2
Authors
Copyright (c) 2024 Zhang Wei, Shanshan Xu, Murphy Xavier

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.