Nanostructured Catalysts for Efficient Energy Conversion: Recent Advances
Abstract
The global transition towards sustainable energy sources has driven significant research into developing advanced catalytic materials that can enable efficient energy conversion processes. Nanostructured catalysts, with their unique physiochemical properties, have emerged as promising candidates to address the challenges associated with energy conversion technologies, such as low conversion efficiencies and high production costs. Understanding the recent advancements in the field of nanostructured catalysts is crucial for accelerating the development of next-generation energy conversion systems. This review article aims to provide a comprehensive overview of the recent progress in the design, synthesis, and application of nanostructured catalysts for efficient energy conversion. The study investigates the underlying principles governing the enhanced catalytic performance of nanomaterials and examines their potential impact on diverse energy conversion processes, including fuel cells, water splitting, and photocatalytic systems. The research methodology involves an extensive literature review of peer-reviewed journal articles, conference proceedings, and patent documents published within the last five years. The analysis focuses on the latest developments in the synthesis and characterization of nanostructured catalysts, as well as their performance evaluation under realistic operating conditions. The review highlights the successful implementation of various nanostructured catalyst architectures, such as nanoparticles, nanotubes, nanosheets, and core-shell structures, in enhancing the catalytic activity, selectivity, and stability for energy conversion applications. Significant advancements in the rational design of catalysts through the control of composition, morphology, and surface properties are discussed, along with their impact on improving energy conversion efficiencies and reducing production costs. The study concludes that the continued development of nanostructured catalysts holds great promise for addressing the current challenges in energy conversion technologies. The insights gained from this review can guide future research directions and facilitate the translation of nanostructured catalyst innovations into practical, large-scale energy conversion systems.
Full text article
References
Abner, S., & Chen, A. (2022). Design and mechanistic study of advanced cobalt-based nanostructured catalysts for electrochemical carbon dioxide reduction. Applied Catalysis B: Environmental, 301, 120761. https://doi.org/10.1016/j.apcatb.2021.120761
Aper, T. M., Yam, F. K., & Beh, K. P. (2021). Influence of temperature and nickel catalyst on the structural and optical properties of indium oxide nanostructured films synthesized by chemical vapor deposition technique. Materials Science in Semiconductor Processing, 132, 105925. https://doi.org/10.1016/j.mssp.2021.105925
Arandiyan, H., Wang, Y., Parlett, C. M. A., & Lee, A. F. (2021). Hierarchical and Anisotropic Nanostructured Catalysts. In W. Y. Teoh, A. Urakawa, Y. H. Ng, & P. Sit (Eds.), Heterogeneous Catalysts (1st ed., pp. 161–181). Wiley. https://doi.org/10.1002/9783527813599.ch9
Bakhtiarzadeh, Z., Rouhani, S., Karimi, Z., Rostamnia, S., Msagati, T. A. M., Kim, D., Jang, H. W., Ramakrishna, S., Varma, R. S., & Shokouhimehr, M. (2021). Hydrothermal self - sacrificing growth of polymorphous MnO2 on magnetic porous - carbon (Fe3O4@Cg/MnO2): A sustainable nanostructured catalyst for activation of molecular oxygen. Molecular Catalysis, 509, 111603. https://doi.org/10.1016/j.mcat.2021.111603
Benjamin, M., Manoj, D., Theyagarajan, K., Thenmozhi, K., Saravanakumar, D., & Senthilkumar, S. (2023). Highly efficient electrocatalytic hydrogen generation in neutral water by a nanostructured cobalt catalyst derived in-situ from ionic liquid tagged cobalt terpyridine. International Journal of Hydrogen Energy, 48(83), 32396–32407. https://doi.org/10.1016/j.ijhydene.2023.04.345
Bianchi, G. S., Meyer, C. I., Duarte, H., Sanz, O., Montes, M., Marchi, A. J., & Regenhardt, S. A. (2022). Catalytic and kinetic study of the liquid-phase oxidation of lactose over Au/Al2O3 nanostructured catalysts in a monolithic stirrer reactor. Catalysis Today, 383, 299–307. https://doi.org/10.1016/j.cattod.2021.03.003
Çal??kan, M., & Baran, T. (2021). Design of nanostructured palladium catalyst supported by chitosan/Co3O4 microspheres and investigation of its catalytic behavior against synthesis of benzonitriles. International Journal of Biological Macromolecules, 182, 722–729. https://doi.org/10.1016/j.ijbiomac.2021.04.068
Çal??kan, M., Baran, T., & Nasrollahzadeh, M. (2021). Facile preparation of nanostructured Pd-Sch-?-FeOOH particles: A highly effective and easily retrievable catalyst for aryl halide cyanation and p-nitrophenol reduction. Journal of Physics and Chemistry of Solids, 152, 109968. https://doi.org/10.1016/j.jpcs.2021.109968
Chatterjee, D. P., & Nandi, A. K. (2021). A review on the recent advances in hybrid supercapacitors. Journal of Materials Chemistry A, 9(29), 15880–15918. https://doi.org/10.1039/D1TA02505H
Dasgupta, B., Ghosh, S., Walter, C., Budde, M. S., Marquardt, G. J., Chen, H.-H., Breithaupt, M. G. M., Yilmaz, T., Garmatter, C., Ahamad, T., Zebger, I., Driess, M., & Menezes, P. W. (2024). A soft molecular single-source precursor approach to synthesize a nanostructured Co9 S8 (pre)catalyst for efficient water oxidation and biomass valorization. Journal of Materials Chemistry A, 10.1039.D4TA05436A. https://doi.org/10.1039/D4TA05436A
De Lima, A. F. F., Moreira, C. R., Alves, O. C., De Avillez, R. R., Zotin, F. M. Z., & Appel, L. G. (2021). Acetone synthesis from ethanol and the Mars and Van Krevelen mechanism using CeO2 and AgCeO2 nanostructured catalysts. Applied Catalysis A: General, 611, 117949. https://doi.org/10.1016/j.apcata.2020.117949
Department of Physics, Sona College of Technology (Autonomous), Salem – 636 005, India., P, K., C, S., Department of Physics, Sona College of Technology (Autonomous), Salem – 636 005, India., B, K., & Department of Chemistry, Sri K.G.S. Arts College, Srivaikuntam – 628 612, Affiliated to Manonmaniam Sundaranar University, India. (2022). A Facile Green Synthesis of Nanostructured Gold–Silver@Carbon (Au–Ag@C) Nanocatalyst and its Applications. Kuwait Journal of Science. https://doi.org/10.48129/kjs.12649
Dos Santos, M. C., Basegio, T. M., Da Cruz Tarelho, L. A., & Bergmann, C. P. (2022). Nanostructured Catalysts for Biomass Gasification. In A. Kopp Alves (Ed.), Environmental Applications of Nanomaterials (pp. 97–107). Springer International Publishing. https://doi.org/10.1007/978-3-030-86822-2_6
Ganesamurthi, J., Veerakumar, P., Liu, T.-Y., & Juang, R.-S. (2024). Electrochemical detection and photodegradation of antihistamine promethazine hydrochloride in water using nanostructured Bi2S3 catalysts. Journal of Environmental Chemical Engineering, 12(2), 111962. https://doi.org/10.1016/j.jece.2024.111962
Giannakis, S., Lin, K.-Y. A., & Ghanbari, F. (2021). A review of the recent advances on the treatment of industrial wastewaters by Sulfate Radical-based Advanced Oxidation Processes (SR-AOPs). Chemical Engineering Journal, 406, 127083. https://doi.org/10.1016/j.cej.2020.127083
He, W., Guo, W., Wu, H., Lin, L., Liu, Q., Han, X., Xie, Q., Liu, P., Zheng, H., Wang, L., Yu, X., & Peng, D. (2021). Challenges and Recent Advances in High Capacity Li?Rich Cathode Materials for High Energy Density Lithium?Ion Batteries. Advanced Materials, 33(50), 2005937. https://doi.org/10.1002/adma.202005937
Jackson, C., Metaxas, M., Dawson, J., & Kucernak, A. R. (2023). Nanostructured Catalyst Layer Allowing Production of Ultralow Loading Electrodes for Polymer Electrolyte Membrane Fuel Cells with Superior Performance. ACS Applied Energy Materials, 6(24), 12296–12306. https://doi.org/10.1021/acsaem.3c01987
Jia, C., Guo, Y., & Wu, F. (2022). Chemodynamic Therapy via Fenton and Fenton?Like Nanomaterials: Strategies and Recent Advances. Small, 18(6), 2103868. https://doi.org/10.1002/smll.202103868
Kaz?c?, H. Ç., ?zgi, M. S., & ?ahin, Ö. (2021). A comprehensive study on the synthesis, characterization and mathematical modeling of nanostructured Co-based catalysts using different support materials for AB hydrolysis. Chemical Papers, 75(6), 2713–2725. https://doi.org/10.1007/s11696-021-01514-0
Khalilzadeh, M. A., Kim, S. Y., Jang, H. W., Luque, R., Varma, R. S., Venditti, R. A., & Shokouhimehr, M. (2022). Carbohydrate-based nanostructured catalysts: Applications in organic transformations. Materials Today Chemistry, 24, 100869. https://doi.org/10.1016/j.mtchem.2022.100869
Kumar, A., & Kumar, L. (2024). Nanostructured catalysts for CO2 reduction: Systematic insights and emerging strategies. Research on Chemical Intermediates, 50(1), 195–217. https://doi.org/10.1007/s11164-023-05190-5
Kumar, P., García, A., Praserthdam, S., & Praserthdam, P. (2024). A comprehensive review and perspective of recent research developments, and accomplishments on structural-based catalysts; 1D, 2D, and 3D nanostructured electrocatalysts for hydrogen energy production. International Journal of Hydrogen Energy, 88, 638–657. https://doi.org/10.1016/j.ijhydene.2024.09.265
Lavate, S. S., & Srivastava, R. (2024). Boosting ethylene yield via a synergistic 2D/0D nanostructured VCu layered double hydroxide/TiO2 catalyst in electrochemical CO2 reduction. Energy Advances, 3(11), 2801–2811. https://doi.org/10.1039/D4YA00417E
Li, B., Croiset, E., & Wen, J. Z. (2022). Influence of Surface Properties of Nanostructured Ceria-Based Catalysts on Their Stability Performance. Nanomaterials, 12(3), 392. https://doi.org/10.3390/nano12030392
Lyu, F., Liu, C., Zeng, S., Bu, X., Chen, Y., Jia, Z., Xie, Y., Sun, L., Mao, Z., Shen, J., Li, G., Luan, J., Yan, Y., Yao, L., Li, L., Wang, X., Wu, G., Li, Y. Y., & Lu, J. (2024). Boosting hydrogen evolution activity: Next-nearest oxygen coordination in dual-phase supra-nanostructured multiprincipal element alloy catalysts. Energy & Environmental Science, 17(20), 7908–7918. https://doi.org/10.1039/D4EE03150D
Moniriyan, F., & Sabounchei, S. J. (2021). A comparative study of catalytic activity on iron?based carbon nanostructured catalysts with Pd loading: Using the Box–Behnken design (BBD) method in the Suzuki–Miyaura coupling. Applied Organometallic Chemistry, 35(12), e6415. https://doi.org/10.1002/aoc.6415
Mori, K., & Yamashita, H. (2021). Design and Architecture of Nanostructured Heterogeneous Catalysts for CO2 Hydrogenation to Formic Acid/Formate. In Y. Himeda (Ed.), CO2 Hydrogenation Catalysis (1st ed., pp. 179–205). Wiley. https://doi.org/10.1002/9783527824113.ch7
Nithya, K., Anbarasan, R., Anbuselvan, N., Vasantha, V. S., Suresh, D., & Amali, A. J. (2024). Heterogenization of Cobalt on Nanostructured Magnetic Covalent Triazine Framework: Effective Catalyst for Buchwald-Hartwig N-Arylation, Reduction, and Oxidation Reactions. ACS Applied Nano Materials, 7(8), 9554–9564. https://doi.org/10.1021/acsanm.4c01031
Peng, Z., Wang, J., Wang, D., & Han, Q.-L. (2021). An Overview of Recent Advances in Coordinated Control of Multiple Autonomous Surface Vehicles. IEEE Transactions on Industrial Informatics, 17(2), 732–745. https://doi.org/10.1109/TII.2020.3004343
Pérez-Madrigal, V., Santiago-Salazar, D., Ríos-Valdovinos, E., Albiter, E., Valenzuela, M. A., & Pola-Albores, F. (2024). Calcium-based promoter in Ni catalysts supported over nanostructured ZrO2. MRS Advances, 9(3), 172–176. https://doi.org/10.1557/s43580-024-00765-9
Piumetti, M., & Bensaid, S. (Eds.). (2021). Nanostructured Catalysts for Environmental Applications. Springer International Publishing. https://doi.org/10.1007/978-3-030-58934-9
Santos, S., Puna, J., Gomes, J., & Marchetti, J. (2021). A Review on the Use of Bio/Nanostructured Heterogeneous Catalysts in Biodiesel Production. In A. P. Ingle (Ed.), Nano? and Biocatalysts for Biodiesel Production (1st ed., pp. 59–91). Wiley. https://doi.org/10.1002/9781119729969.ch3
Sassykova, L. R., Dossumova, B. T., Ilmuratova, M. S., Shakiyeva, T. V., Baizhomartov, B. B., Sassykova, A. R., Zhaxibayeva, Z. M., & Abildin, T. S. (2023). Development of nanostructured catalysts for catalytic oxidative water purification from organic impurities, including phenolic compounds. Chimica Techno Acta, 10(3), 202310309, 6919. https://doi.org/10.15826/chimtech.2023.10.3.09
Shi, G., Tano, T., Iwataki, T., Tryk, D. A., Uchida, M., Iiyama, A., Terao, K., Tamoto, K., Yamaguchi, M., Miyatake, K., & Kakinuma, K. (2023). Highly Active Nanostructured NiCoMo-Based Catalyst for Oxygen Evolution in Anion-Exchange Membrane Water Electrolysis. ACS Applied Energy Materials, 6(21), 10742–10747. https://doi.org/10.1021/acsaem.3c02152
Wang, L., Liu, Y., Liu, X., & Chen, W. (2023). 3D nanostructured Ce-doped CoFe-LDH/NF self-supported catalyst for high-performance OER. Dalton Transactions, 52(34), 12038–12048. https://doi.org/10.1039/D3DT01814H
Wu, Y., Liu, Y., Namini, A. S., Jung, S., Delbari, S. A., Xia, C., Le, Q. V., Jang, H. W., T-Raissi, A., Shokouhimehr, M., & Kim, D. (2024). Harnessing lanthanide-based nanostructured catalysts for energy conversion and chemical transformations. Journal of Alloys and Compounds, 1000, 174792. https://doi.org/10.1016/j.jallcom.2024.174792
Zhang, Q., Liang, S.-X., Jia, Z., Zhang, W., Wang, W., & Zhang, L.-C. (2021). Efficient nanostructured heterogeneous catalysts by electrochemical etching of partially crystallized Fe-based metallic glass ribbons. Journal of Materials Science & Technology, 61, 159–168. https://doi.org/10.1016/j.jmst.2020.06.016
Zhou, B., Chandrashekhar, V. G., Ma, Z., Kreyenschulte, C., Bartling, S., Lund, H., Beller, M., & Jagadeesh, R. V. (2023). Development of a General and Selective Nanostructured Cobalt Catalyst for the Hydrogenation of Benzofurans, Indoles and Benzothiophenes. Angewandte Chemie International Edition, 62(10), e202215699. https://doi.org/10.1002/anie.202215699
Zhu, F.-Y., Zhang, X., Han, X., Zhou, C., Lu, S., Lang, J.-P., & Gu, H. (2022). Nanostructured catalyst assembled from CNTs, NiSe2 nanoparticles, and 2D Ni-MOF nanosheets for electrocatalytic hydrogen evolution reaction. CrystEngComm, 24(48), 8503–8508. https://doi.org/10.1039/D2CE01205G
Authors
Copyright (c) 2024 Rithy Vann, Ravi Dara, Vann Sok

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.