Abstract
The increasing demand for efficient energy storage solutions has driven research into polymers and composites. These materials offer unique advantages, such as lightweight properties, flexibility, and tunable conductivity, making them ideal candidates for energy storage applications. The exploration of innovative polymers and composites is essential for improving energy density and cycle life in storage devices. This research aims to evaluate the performance of various polymers and composites in energy storage applications. The focus is on understanding their electrochemical properties and how modifications can enhance their performance in batteries and supercapacitors. A systematic review of recent advancements in polymer and composite materials was conducted, alongside experimental assessments of selected materials. Performance metrics such as conductivity, energy density, and stability were evaluated using electrochemical testing methods, including cyclic voltammetry and galvanostatic charge-discharge tests. The findings indicate that specific polymers and composites exhibit enhanced performance in energy storage applications. Notable improvements in conductivity and energy density were observed, particularly with the incorporation of conductive fillers. Additionally, the stability of the materials under cycling conditions showed promising results, suggesting their potential for practical applications.The research highlights the significant potential of polymers and composites in advancing energy storage technologies. Continued exploration and optimization of these materials can lead to the development of more efficient and durable energy storage solutions, addressing the growing demands for sustainable energy systems.
Full text article
References
Balla, E., Daniilidis, V., Karlioti, G., Kalamas, T., Stefanidou, M., Bikiaris, N. D., Vlachopoulos, A., Koumentakou, I., & Bikiaris, D. N. (2021). Poly(lactic Acid): A Versatile Biobased Polymer for the Future with Multifunctional Properties—From Monomer Synthesis, Polymerization Techniques and Molecular Weight Increase to PLA Applications. Polymers, 13(11), 1822. https://doi.org/10.3390/polym13111822
Chen, H., Wang, F., Fan, H., Hong, R., & Li, W. (2021). Construction of MOF-based superhydrophobic composite coating with excellent abrasion resistance and durability for self-cleaning, corrosion resistance, anti-icing, and loading-increasing research. Chemical Engineering Journal, 408, 127343. https://doi.org/10.1016/j.cej.2020.127343
Ding, P., Lin, Z., Guo, X., Wu, L., Wang, Y., Guo, H., Li, L., & Yu, H. (2021). Polymer electrolytes and interfaces in solid-state lithium metal batteries. Materials Today, 51, 449–474. https://doi.org/10.1016/j.mattod.2021.08.005
Gao, T., Zhang, Y., Li, C., Wang, Y., Chen, Y., An, Q., Zhang, S., Li, H. N., Cao, H., Ali, H. M., Zhou, Z., & Sharma, S. (2022). Fiber-reinforced composites in milling and grinding: Machining bottlenecks and advanced strategies. Frontiers of Mechanical Engineering, 17(2), 24. https://doi.org/10.1007/s11465-022-0680-8
Gao, Y., Zhang, X., Xu, X., Liu, L., Zhao, Y., & Zhang, S. (2021). Application and research progress of phase change energy storage in new energy utilization. Journal of Molecular Liquids, 343, 117554. https://doi.org/10.1016/j.molliq.2021.117554
Guo, G., Li, K., Zhang, D., & Lei, M. (2022). Quantitative source apportionment and associated driving factor identification for soil potential toxicity elements via combining receptor models, SOM, and geo-detector method. Science of The Total Environment, 830, 154721. https://doi.org/10.1016/j.scitotenv.2022.154721
Guo, L., Liang, Z., Yang, L., Du, W., Yu, T., Tang, H., Li, C., & Qiu, H. (2021). The role of natural polymers in bone tissue engineering. Journal of Controlled Release, 338, 571–582. https://doi.org/10.1016/j.jconrel.2021.08.055
Harada, T., Kudo, K., Fujima, N., Yoshikawa, M., Ikebe, Y., Sato, R., Shirai, T., Bito, Y., Uwano, I., & Miyata, M. (2022). Quantitative Susceptibility Mapping: Basic Methods and Clinical Applications. RadioGraphics, 42(4), 1161–1176. https://doi.org/10.1148/rg.210054
Hou, Q., Ding, S., & Yu, X. (2021). Composite Super-Twisting Sliding Mode Control Design for PMSM Speed Regulation Problem Based on a Novel Disturbance Observer. IEEE Transactions on Energy Conversion, 36(4), 2591–2599. https://doi.org/10.1109/TEC.2020.2985054
Hsissou, R., Seghiri, R., Benzekri, Z., Hilali, M., Rafik, M., & Elharfi, A. (2021). Polymer composite materials: A comprehensive review. Composite Structures, 262, 113640. https://doi.org/10.1016/j.compstruct.2021.113640
Jain, A., Kumar, C. S., & Shrivastava, Y. (2022). Fabrication and Machining of Fiber Matrix Composite through Electric Discharge Machining: A short review. Materials Today: Proceedings, 51, 1233–1237. https://doi.org/10.1016/j.matpr.2021.07.288
Korley, L. T. J., Epps, T. H., Helms, B. A., & Ryan, A. J. (2021). Toward polymer upcycling—Adding value and tackling circularity. Science, 373(6550), 66–69. https://doi.org/10.1126/science.abg4503
Krauklis, A. E., Karl, C. W., Gagani, A. I., & Jørgensen, J. K. (2021). Composite Material Recycling Technology—State-of-the-Art and Sustainable Development for the 2020s. Journal of Composites Science, 5(1), 28. https://doi.org/10.3390/jcs5010028
Kruželák, J., Kvasni?áková, A., Hložeková, K., & Hudec, I. (2021). Progress in polymers and polymer composites used as efficient materials for EMI shielding. Nanoscale Advances, 3(1), 123–172. https://doi.org/10.1039/D0NA00760A
Kumar, N., Gupta, S. K., & Sharma, V. K. (2021). Application of phase change material for thermal energy storage: An overview of recent advances. Materials Today: Proceedings, 44, 368–375. https://doi.org/10.1016/j.matpr.2020.09.745
Li, F., Huang, X., Li, Y., Lu, L., Meng, X., Yang, X., & Sundén, B. (2023). Application and analysis of flip mechanism in the melting process of a triplex-tube latent heat energy storage unit. Energy Reports, 9, 3989–4004. https://doi.org/10.1016/j.egyr.2023.03.037
Li, J., Cai, Y., Wu, H., Yu, Z., Yan, X., Zhang, Q., Gao, T. Z., Liu, K., Jia, X., & Bao, Z. (2021). Polymers in Lithium?Ion and Lithium Metal Batteries. Advanced Energy Materials, 11(15), 2003239. https://doi.org/10.1002/aenm.202003239
Li, Z., Lu, Y., Huang, R., Chang, J., Yu, X., Jiang, R., Yu, X., & Roskilly, A. P. (2021). Applications and technological challenges for heat recovery, storage and utilisation with latent thermal energy storage. Applied Energy, 283, 116277. https://doi.org/10.1016/j.apenergy.2020.116277
Liu, S., Liu, W., Ba, D., Zhao, Y., Ye, Y., Li, Y., & Liu, J. (2023). Filler?Integrated Composite Polymer Electrolyte for Solid?State Lithium Batteries. Advanced Materials, 35(2), 2110423. https://doi.org/10.1002/adma.202110423
Luo, Y., Xie, Y., Jiang, H., Chen, Y., Zhang, L., Sheng, X., Xie, D., Wu, H., & Mei, Y. (2021). Flame-retardant and form-stable phase change composites based on MXene with high thermostability and thermal conductivity for thermal energy storage. Chemical Engineering Journal, 420, 130466. https://doi.org/10.1016/j.cej.2021.130466
Maranzoni, A., D’Oria, M., & Rizzo, C. (2023). Quantitative flood hazard assessment methods: A review. Journal of Flood Risk Management, 16(1), e12855. https://doi.org/10.1111/jfr3.12855
Miao, S., Pan, P.-Z., Li, S., Chen, J., & Konicek, P. (2021). Quantitative fracture analysis of hard rock containing double infilling flaws with a novel DIC-based method. Engineering Fracture Mechanics, 252, 107846. https://doi.org/10.1016/j.engfracmech.2021.107846
Nurazzi, N. M., Asyraf, M. R. M., Rayung, M., Norrrahim, M. N. F., Shazleen, S. S., Rani, M. S. A., Shafi, A. R., Aisyah, H. A., Radzi, M. H. M., Sabaruddin, F. A., Ilyas, R. A., Zainudin, E. S., & Abdan, K. (2021). Thermogravimetric Analysis Properties of Cellulosic Natural Fiber Polymer Composites: A Review on Influence of Chemical Treatments. Polymers, 13(16), 2710. https://doi.org/10.3390/polym13162710
Olabi, A. G., Abdelghafar, A. A., Maghrabie, H. M., Sayed, E. T., Rezk, H., Radi, M. A., Obaideen, K., & Abdelkareem, M. A. (2023). Application of artificial intelligence for prediction, optimization, and control of thermal energy storage systems. Thermal Science and Engineering Progress, 39, 101730. https://doi.org/10.1016/j.tsep.2023.101730
Olabi, A. G., Abdelkareem, M. A., Wilberforce, T., & Sayed, E. T. (2021). Application of graphene in energy storage device – A review. Renewable and Sustainable Energy Reviews, 135, 110026. https://doi.org/10.1016/j.rser.2020.110026
Shanmugam, V., Rajendran, D. J. J., Babu, K., Rajendran, S., Veerasimman, A., Marimuthu, U., Singh, S., Das, O., Neisiany, R. E., Hedenqvist, M. S., Berto, F., & Ramakrishna, S. (2021). The mechanical testing and performance analysis of polymer-fibre composites prepared through the additive manufacturing. Polymer Testing, 93, 106925. https://doi.org/10.1016/j.polymertesting.2020.106925
Siti, M. W., Mbungu, N. T., Tungadio, D. H., Banza, B. B., & Ngoma, L. (2022). Application of load frequency control method to a multi-microgrid with energy storage system. Journal of Energy Storage, 52, 104629. https://doi.org/10.1016/j.est.2022.104629
Tang, L., Zhang, J., Tang, Y., Kong, J., Liu, T., & Gu, J. (2021). Polymer matrix wave-transparent composites: A review. Journal of Materials Science & Technology, 75, 225–251. https://doi.org/10.1016/j.jmst.2020.09.017
Wang, M., Tang, X.-H., Cai, J.-H., Wu, H., Shen, J.-B., & Guo, S.-Y. (2021). Construction, mechanism and prospective of conductive polymer composites with multiple interfaces for electromagnetic interference shielding: A review. Carbon, 177, 377–402. https://doi.org/10.1016/j.carbon.2021.02.047
Wang, W., Yuan, B., Sun, Q., & Wennersten, R. (2022). Application of energy storage in integrated energy systems—A solution to fluctuation and uncertainty of renewable energy. Journal of Energy Storage, 52, 104812. https://doi.org/10.1016/j.est.2022.104812
Wang, Z., Zhang, M., Ma, W., Zhu, J., & Song, W. (2021). Application of Carbon Materials in Aqueous Zinc Ion Energy Storage Devices. Small, 17(19), 2100219. https://doi.org/10.1002/smll.202100219
Wang, Z., Zheng, X., Ouchi, T., Kouznetsova, T. B., Beech, H. K., Av-Ron, S., Matsuda, T., Bowser, B. H., Wang, S., Johnson, J. A., Kalow, J. A., Olsen, B. D., Gong, J. P., Rubinstein, M., & Craig, S. L. (2021). Toughening hydrogels through force-triggered chemical reactions that lengthen polymer strands. Science, 374(6564), 193–196. https://doi.org/10.1126/science.abg2689
Wei, B., Zhang, L., & Yang, S. (2021). Polymer composites with expanded graphite network with superior thermal conductivity and electromagnetic interference shielding performance. Chemical Engineering Journal, 404, 126437. https://doi.org/10.1016/j.cej.2020.126437
Xi, G., Xiao, M., Wang, S., Han, D., Li, Y., & Meng, Y. (2021). Polymer?Based Solid Electrolytes: Material Selection, Design, and Application. Advanced Functional Materials, 31(9), 2007598. https://doi.org/10.1002/adfm.202007598
Yao, J., Wu, Z., Wang, H., Yang, F., Ren, J., & Zhang, Z. (2022). Application-oriented hydrolysis reaction system of solid-state hydrogen storage materials for high energy density target: A review. Journal of Energy Chemistry, 74, 218–238. https://doi.org/10.1016/j.jechem.2022.07.009
Zha, J.-W., Zheng, M.-S., Fan, B.-H., & Dang, Z.-M. (2021). Polymer-based dielectrics with high permittivity for electric energy storage: A review. Nano Energy, 89, 106438. https://doi.org/10.1016/j.nanoen.2021.106438
Zhang, Y., Ruan, K., Zhou, K., & Gu, J. (2023). Controlled Distributed Ti3 C2 T x Hollow Microspheres on Thermally Conductive Polyimide Composite Films for Excellent Electromagnetic Interference Shielding. Advanced Materials, 35(16), 2211642. https://doi.org/10.1002/adma.202211642
Zhang, Z., & Li, Y. (2021). Polymerized Small?Molecule Acceptors for High?Performance All?Polymer Solar Cells. Angewandte Chemie International Edition, 60(9), 4422–4433. https://doi.org/10.1002/anie.202009666
Zhou, X., Jia, Z., Zhang, X., Wang, B., Wu, W., Liu, X., Xu, B., & Wu, G. (2021). Controllable synthesis of Ni/NiO@porous carbon hybrid composites towards remarkable electromagnetic wave absorption and wide absorption bandwidth. Journal of Materials Science & Technology, 87, 120–132. https://doi.org/10.1016/j.jmst.2021.01.073
Zinetullina, A., Yang, M., Khakzad, N., Golman, B., & Li, X. (2021). Quantitative resilience assessment of chemical process systems using functional resonance analysis method and Dynamic Bayesian network. Reliability Engineering & System Safety, 205, 107232. https://doi.org/10.1016/j.ress.2020.107232
Authors
Copyright (c) 2024 Chen Mei, Wang Jing, Sun Wei

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.