Mathematical Biology: Modeling the Dynamics of Ecosystems and Biodiversity
Abstract
Background: Mathematical biology plays a crucial role in understanding the dynamics of ecosystems and biodiversity. By employing mathematical models, researchers can analyze complex biological interactions and predict changes within ecosystems over time. This approach is vital for addressing environmental challenges and informing conservation strategies.
Objective: This study aims to develop mathematical models that accurately represent the dynamics of ecosystems and the factors influencing biodiversity. The focus is on identifying key interactions between species and their environment, as well as the implications of these interactions for ecosystem stability.
Methodology: A combination of differential equations and computational simulations was employed to model various ecological scenarios. Data from field studies and ecological surveys were utilized to parameterize the models, allowing for realistic representations of species interactions and environmental influences.
Results: Findings indicate that specific species interactions, such as predation and competition, significantly affect biodiversity and ecosystem dynamics. The models revealed thresholds beyond which ecosystems could shift to alternative stable states, emphasizing the importance of maintaining biodiversity for ecosystem resilience.
Conclusion: This research highlights the value of mathematical modeling in the study of ecosystems and biodiversity. By providing insights into the intricate relationships between species and their environment, the study contributes to a better understanding of ecological dynamics and informs effective conservation strategies.
Full text article
References
Abbasi, A., Farooq, W., Tag-ElDin, E. S. M., Khan, S. U., Khan, M. I., Guedri, K., Elattar, S., Waqas, M., & Galal, A. M. (2022). Heat Transport Exploration for Hybrid Nanoparticle (Cu, Fe3O4)—Based Blood Flow via Tapered Complex Wavy Curved Channel with Slip Features. Micromachines, 13(9), 1415. https://doi.org/10.3390/mi13091415
Aladdin, N. A. L., Bachok, N., & Pop, I. (2020). Cu-Al2O3/water hybrid nanofluid flow over a permeable moving surface in presence of hydromagnetic and suction effects. Alexandria Engineering Journal, 59(2), 657–666. https://doi.org/10.1016/j.aej.2020.01.028
Al-Furjan, M. S. H., Oyarhossein, M. A., Habibi, M., Safarpour, H., & Jung, D. W. (2020). Frequency and critical angular velocity characteristics of rotary laminated cantilever microdisk via two-dimensional analysis. Thin-Walled Structures, 157, 107111. https://doi.org/10.1016/j.tws.2020.107111
Al-Kouz, W., Abderrahmane, A., Shamshuddin, Md., Younis, O., Mohammed, S., Bég, O. A., & Toghraie, D. (2021). Heat transfer and entropy generation analysis of water-Fe3O4/CNT hybrid magnetic nanofluid flow in a trapezoidal wavy enclosure containing porous media with the Galerkin finite element method. The European Physical Journal Plus, 136(11), 1184. https://doi.org/10.1140/epjp/s13360-021-02192-3
Aziz, A., Jamshed, W., Aziz, T., Bahaidarah, H. M. S., & Ur Rehman, K. (2021). Entropy analysis of Powell–Eyring hybrid nanofluid including effect of linear thermal radiation and viscous dissipation. Journal of Thermal Analysis and Calorimetry, 143(2), 1331–1343. https://doi.org/10.1007/s10973-020-10210-2
Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., & Tian, Q. (2023). Accurate medium-range global weather forecasting with 3D neural networks. Nature, 619(7970), 533–538. https://doi.org/10.1038/s41586-023-06185-3
Chatterjee, K., Chatterjee, K., Kumar, A., & Shankar, S. (2020). Healthcare impact of COVID-19 epidemic in India: A stochastic mathematical model. Medical Journal Armed Forces India, 76(2), 147–155. https://doi.org/10.1016/j.mjafi.2020.03.022
Di Vecchia, P., Heissenberg, C., Russo, R., & Veneziano, G. (2021). The eikonal approach to gravitational scattering and radiation at $$ mathcal{O} $$(G3). Journal of High Energy Physics, 2021(7), 169. https://doi.org/10.1007/JHEP07(2021)169
Froustey, J., Pitrou, C., & Volpe, M. C. (2020). Neutrino decoupling including flavour oscillations and primordial nucleosynthesis. Journal of Cosmology and Astroparticle Physics, 2020(12), 015–015. https://doi.org/10.1088/1475-7516/2020/12/015
Gholinia, M., Hosseinzadeh, Kh., & Ganji, D. D. (2020). Investigation of different base fluids suspend by CNTs hybrid nanoparticle over a vertical circular cylinder with sinusoidal radius. Case Studies in Thermal Engineering, 21, 100666. https://doi.org/10.1016/j.csite.2020.100666
Gu, Y., & Sun, H. (2020). A meshless method for solving three-dimensional time fractional diffusion equation with variable-order derivatives. Applied Mathematical Modelling, 78, 539–549. https://doi.org/10.1016/j.apm.2019.09.055
Gul, T., Kashifullah, Bilal, M., Alghamdi, W., Asjad, M. I., & Abdeljawad, T. (2021). Hybrid nanofluid flow within the conical gap between the cone and the surface of a rotating disk. Scientific Reports, 11(1), 1180. https://doi.org/10.1038/s41598-020-80750-y
Herrmann, E., Parra-Martinez, J., Ruf, M. S., & Zeng, M. (2021). Radiative classical gravitational observables at $$ mathcal{O} $$(G3) from scattering amplitudes. Journal of High Energy Physics, 2021(10), 148. https://doi.org/10.1007/JHEP10(2021)148
Katebi, J., Shoaei-parchin, M., Shariati, M., Trung, N. T., & Khorami, M. (2020). Developed comparative analysis of metaheuristic optimization algorithms for optimal active control of structures. Engineering with Computers, 36(4), 1539–1558. https://doi.org/10.1007/s00366-019-00780-7
Khater, M. M. A. (2023). Multi-vector with nonlocal and non-singular kernel ultrashort optical solitons pulses waves in birefringent fibers. Chaos, Solitons & Fractals, 167, 113098. https://doi.org/10.1016/j.chaos.2022.113098
Klappert, J., Lange, F., Maierhöfer, P., & Usovitsch, J. (2021). Integral reduction with Kira 2.0 and finite field methods. Computer Physics Communications, 266, 108024. https://doi.org/10.1016/j.cpc.2021.108024
Kumar, R. N., Gamaoun, F., Abdulrahman, A., Chohan, J. S., & Gowda, R. J. P. (2022). Heat transfer analysis in three-dimensional unsteady magnetic fluid flow of water-based ternary hybrid nanofluid conveying three various shaped nanoparticles: A comparative study. International Journal of Modern Physics B, 36(25), 2250170. https://doi.org/10.1142/S0217979222501703
Kumar, S., Ma, W.-X., & Kumar, A. (2021). Lie symmetries, optimal system and group-invariant solutions of the (3+1)-dimensional generalized KP equation. Chinese Journal of Physics, 69, 1–23. https://doi.org/10.1016/j.cjph.2020.11.013
Lahmar, S., Kezzar, M., Eid, M. R., & Sari, M. R. (2020). Heat transfer of squeezing unsteady nanofluid flow under the effects of an inclined magnetic field and variable thermal conductivity. Physica A: Statistical Mechanics and Its Applications, 540, 123138. https://doi.org/10.1016/j.physa.2019.123138
Li, L., Zhao, X., Lu, W., & Tan, S. (2020). Deep learning for variational multimodality tumor segmentation in PET/CT. Neurocomputing, 392, 277–295. https://doi.org/10.1016/j.neucom.2018.10.099
Li, W., Liu, J., Zeng, J., Leong, Y.-K., Elsworth, D., Tian, J., & Li, L. (2020). A fully coupled multidomain and multiphysics model for evaluation of shale gas extraction. Fuel, 278, 118214. https://doi.org/10.1016/j.fuel.2020.118214
Li, Y.-X., Khan, M. I., Gowda, R. J. P., Ali, A., Farooq, S., Chu, Y.-M., & Khan, S. U. (2021). Dynamics of aluminum oxide and copper hybrid nanofluid in nonlinear mixed Marangoni convective flow with entropy generation: Applications to renewable energy. Chinese Journal of Physics, 73, 275–287. https://doi.org/10.1016/j.cjph.2021.06.004
Liu, X., & Ma, Y.-Q. (2023). AMFlow: A Mathematica package for Feynman integrals computation via auxiliary mass flow. Computer Physics Communications, 283, 108565. https://doi.org/10.1016/j.cpc.2022.108565
Lund, L. A., Omar, Z., Khan, I., Seikh, A. H., Sherif, E.-S. M., & Nisar, K. S. (2020). Stability analysis and multiple solution of Cu–Al2O3/H2O nanofluid contains hybrid nanomaterials over a shrinking surface in the presence of viscous dissipation. Journal of Materials Research and Technology, 9(1), 421–432. https://doi.org/10.1016/j.jmrt.2019.10.071
Meng, X., & Karniadakis, G. E. (2020). A composite neural network that learns from multi-fidelity data: Application to function approximation and inverse PDE problems. Journal of Computational Physics, 401, 109020. https://doi.org/10.1016/j.jcp.2019.109020
Nisar, K. S., Ilhan, O. A., Abdulazeez, S. T., Manafian, J., Mohammed, S. A., & Osman, M. S. (2021). Novel multiple soliton solutions for some nonlinear PDEs via multiple Exp-function method. Results in Physics, 21, 103769. https://doi.org/10.1016/j.rinp.2020.103769
Parra-Martinez, J., Ruf, M. S., & Zeng, M. (2020). Extremal black hole scattering at $$ mathcal{O} $$(G3): Graviton dominance, eikonal exponentiation, and differential equations. Journal of High Energy Physics, 2020(11), 23. https://doi.org/10.1007/JHEP11(2020)023
Sevinik Adigüzel, R., Aksoy, Ü., Karapinar, E., & Erhan, ?. M. (2024). On the solution of a boundary value problem associated with a fractional differential equation. Mathematical Methods in the Applied Sciences, 47(13), 10928–10939. https://doi.org/10.1002/mma.6652
Swain, K., Mebarek-Oudina, F., & Abo-Dahab, S. M. (2022). Influence of MWCNT/Fe3O4 hybrid nanoparticles on an exponentially porous shrinking sheet with chemical reaction and slip boundary conditions. Journal of Thermal Analysis and Calorimetry, 147(2), 1561–1570. https://doi.org/10.1007/s10973-020-10432-4
Thuerey, N., Weißenow, K., Prantl, L., & Hu, X. (2020). Deep Learning Methods for Reynolds-Averaged Navier–Stokes Simulations of Airfoil Flows. AIAA Journal, 58(1), 25–36. https://doi.org/10.2514/1.J058291
Venkateswarlu, B., & Satya Narayana, P. V. (2021). Cu?Al2 O3 /H2 O hybrid nanofluid flow past a porous stretching sheet due to temperatue?dependent viscosity and viscous dissipation. Heat Transfer, 50(1), 432–449. https://doi.org/10.1002/htj.21884
Wu, C., Zhu, M., Tan, Q., Kartha, Y., & Lu, L. (2023). A comprehensive study of non-adaptive and residual-based adaptive sampling for physics-informed neural networks. Computer Methods in Applied Mechanics and Engineering, 403, 115671. https://doi.org/10.1016/j.cma.2022.115671
Yin, Y.-H., Lü, X., & Ma, W.-X. (2022). Bäcklund transformation, exact solutions and diverse interaction phenomena to a (3+1)-dimensional nonlinear evolution equation. Nonlinear Dynamics, 108(4), 4181–4194. https://doi.org/10.1007/s11071-021-06531-y
Zhang, D., Guo, L., & Karniadakis, G. E. (2020). Learning in Modal Space: Solving Time-Dependent Stochastic PDEs Using Physics-Informed Neural Networks. SIAM Journal on Scientific Computing, 42(2), A639–A665. https://doi.org/10.1137/19M1260141
Zhang, L., Arain, M. B., Bhatti, M. M., Zeeshan, A., & Hal-Sulami, H. (2020). Effects of magnetic Reynolds number on swimming of gyrotactic microorganisms between rotating circular plates filled with nanofluids. Applied Mathematics and Mechanics, 41(4), 637–654. https://doi.org/10.1007/s10483-020-2599-7
Authors
Copyright (c) 2024 Khoironi Fanana Akbar, Daiki Nishida, Joni Wilson Sitopu

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.