Impact of Climate Change on Marine Biodiversity and Fisherie
Abstract
Climate change poses significant threats to marine biodiversity and fisheries, impacting ecosystems and the livelihoods that depend on them. Rising sea temperatures, ocean acidification, and altered salinity levels are among the key environmental changes affecting marine life. Understanding these impacts is crucial for developing effective management strategies. This study aims to investigate the effects of climate change on marine biodiversity and the resulting implications for fisheries. The research seeks to identify vulnerable species and ecosystems, as well as assess the economic consequences for fishing communities. A comprehensive literature review was conducted, analyzing existing studies on climate change impacts on marine ecosystems. Data from various regions were synthesized to evaluate changes in species distribution, abundance, and community composition. Economic assessments of fisheries were incorporated to understand the socio-economic implications. Findings indicate significant shifts in marine biodiversity due to climate change, with some species migrating to cooler waters while others face population declines. These changes have direct implications for fisheries, leading to altered catch patterns and economic instability for fishing communities. Vulnerable species were identified, highlighting the need for targeted conservation efforts. This research underscores the urgent need for adaptive management strategies to mitigate the impacts of climate change on marine biodiversity and fisheries. Collaborative efforts between scientists, policymakers, and fishing communities are essential to ensure the sustainability of marine resources in the face of ongoing environmental changes.
Full text article
References
Ahmadi, M., Hemami, M., Kaboli, M., & Shabani, F. (2023). MAXENT brings comparable results when the input data are being completed; Model parameterization of four species distribution models. Ecology and Evolution, 13(2), e9827. https://doi.org/10.1002/ece3.9827
Ancillotto, L., Bosso, L., Smeraldo, S., Mori, E., Mazza, G., Herkt, M., Galimberti, A., Ramazzotti, F., & Russo, D. (2020). An African bat in Europe, Plecotus gaisleri: Biogeographic and ecological insights from molecular taxonomy and Species Distribution Models. Ecology and Evolution, 10(12), 5785–5800. https://doi.org/10.1002/ece3.6317
Biber, M. F., Voskamp, A., Niamir, A., Hickler, T., & Hof, C. (2020). A comparison of macroecological and stacked species distribution models to predict future global terrestrial vertebrate richness. Journal of Biogeography, 47(1), 114–129. https://doi.org/10.1111/jbi.13696
Borman, A. M., Muller, J., Walsh-Quantick, J., Szekely, A., Patterson, Z., Palmer, M. D., Fraser, M., & Johnson, E. M. (2020). MIC distributions for amphotericin B, fluconazole, itraconazole, voriconazole, flucytosine and anidulafungin and 35 uncommon pathogenic yeast species from the UK determined using the CLSI broth microdilution method. Journal of Antimicrobial Chemotherapy, 75(5), 1194–1205. https://doi.org/10.1093/jac/dkz568
Cao, J., Thorson, J. T., Punt, A. E., & Szuwalski, C. (2020). A novel spatiotemporal stock assessment framework to better address fine?scale species distributions: Development and simulation testing. Fish and Fisheries, 21(2), 350–367. https://doi.org/10.1111/faf.12433
Chardon, N. I., Pironon, S., Peterson, M. L., & Doak, D. F. (2020). Incorporating intraspecific variation into species distribution models improves distribution predictions, but cannot predict species traits for a wide?spread plant species. Ecography, 43(1), 60–74. https://doi.org/10.1111/ecog.04630
Charney, N. D., Record, S., Gerstner, B. E., Merow, C., Zarnetske, P. L., & Enquist, B. J. (2021). A Test of Species Distribution Model Transferability Across Environmental and Geographic Space for 108 Western North American Tree Species. Frontiers in Ecology and Evolution, 9, 689295. https://doi.org/10.3389/fevo.2021.689295
Chauvier, Y., Thuiller, W., Brun, P., Lavergne, S., Descombes, P., Karger, D. N., Renaud, J., & Zimmermann, N. E. (2021). Influence of climate, soil, and land cover on plant species distribution in the European Alps. Ecological Monographs, 91(2), e01433. https://doi.org/10.1002/ecm.1433
Chen, Q., Yin, Y., Zhao, R., Yang, Y., Teixeira Da Silva, J. A., & Yu, X. (2020). Incorporating Local Adaptation Into Species Distribution Modeling of Paeonia mairei, an Endemic Plant to China. Frontiers in Plant Science, 10, 1717. https://doi.org/10.3389/fpls.2019.01717
Chevalier, M., Zarzo-Arias, A., Guélat, J., Mateo, R. G., & Guisan, A. (2022). Accounting for niche truncation to improve spatial and temporal predictions of species distributions. Frontiers in Ecology and Evolution, 10, 944116. https://doi.org/10.3389/fevo.2022.944116
Fan, B., Li, J., Wang, X., Chen, J., Gao, X., Li, W., Ai, S., Cui, L., Gao, S., & Liu, Z. (2021). Ammonia spatiotemporal distribution and risk assessment for freshwater species in aquatic ecosystem in China. Ecotoxicology and Environmental Safety, 207, 111541. https://doi.org/10.1016/j.ecoenv.2020.111541
Gamliel, I., Buba, Y., Guy?Haim, T., Garval, T., Willette, D., Rilov, G., & Belmaker, J. (2020). Incorporating physiology into species distribution models moderates the projected impact of warming on selected Mediterranean marine species. Ecography, 43(7), 1090–1106. https://doi.org/10.1111/ecog.04423
Hermosilla, T., Bastyr, A., Coops, N. C., White, J. C., & Wulder, M. A. (2022). Mapping the presence and distribution of tree species in Canada’s forested ecosystems. Remote Sensing of Environment, 282, 113276. https://doi.org/10.1016/j.rse.2022.113276
Hu, W., Wang, Y., Zhang, D., Yu, W., Chen, G., Xie, T., Liu, Z., Ma, Z., Du, J., Chao, B., Lei, G., & Chen, B. (2020). Mapping the potential of mangrove forest restoration based on species distribution models: A case study in China. Science of The Total Environment, 748, 142321. https://doi.org/10.1016/j.scitotenv.2020.142321
Jia, Y., Niu, C.-T., Xu, X., Zheng, F.-Y., Liu, C.-F., Wang, J.-J., Lu, Z.-M., Xu, Z.-H., & Li, Q. (2021). Metabolic potential of microbial community and distribution mechanism of Staphylococcus species during broad bean paste fermentation. Food Research International, 148, 110533. https://doi.org/10.1016/j.foodres.2021.110533
Jiménez, L., & Soberón, J. (2020). Leaving the area under the receiving operating characteristic curve behind: An evaluation method for species distribution modelling applications based on presence?only data. Methods in Ecology and Evolution, 11(12), 1571–1586. https://doi.org/10.1111/2041-210X.13479
Kaky, E., Nolan, V., Alatawi, A., & Gilbert, F. (2020). A comparison between Ensemble and MaxEnt species distribution modelling approaches for conservation: A case study with Egyptian medicinal plants. Ecological Informatics, 60, 101150. https://doi.org/10.1016/j.ecoinf.2020.101150
Kennedy, J. P., Preziosi, R. F., Rowntree, J. K., & Feller, I. C. (2020). Is the central?marginal hypothesis a general rule? Evidence from three distributions of an expanding mangrove species, Avicennia germinans (L.) L. Molecular Ecology, 29(4), 704–719. https://doi.org/10.1111/mec.15365
LeMoine, M. T., Eby, L. A., Clancy, C. G., Nyce, L. G., Jakober, M. J., & Isaak, D. J. (2020). Landscape resistance mediates native fish species distribution shifts and vulnerability to climate change in riverscapes. Global Change Biology, 26(10), 5492–5508. https://doi.org/10.1111/gcb.15281
Lu, M.-Y., Deng, Y.-M., Yang, W.-W., Ye, M., Jiao, Y.-H., & Xu, Q. (2020). A novel rotary serpentine flow field with improved electrolyte penetration and species distribution for vanadium redox flow battery. Electrochimica Acta, 361, 137089. https://doi.org/10.1016/j.electacta.2020.137089
Machado-Stredel, F., Cobos, M. E., & Peterson, A. T. (2021). A simulation-based method for selecting calibration areas for ecological niche models and species distribution models. Frontiers of Biogeography, 13(4). https://doi.org/10.21425/F5FBG48814
Milanesi, P., Della Rocca, F., & Robinson, R. A. (2020). Integrating dynamic environmental predictors and species occurrences: Toward true dynamic species distribution models. Ecology and Evolution, 10(2), 1087–1092. https://doi.org/10.1002/ece3.5938
Pagel, J., Treurnicht, M., Bond, W. J., Kraaij, T., Nottebrock, H., Schutte-Vlok, A., Tonnabel, J., Esler, K. J., & Schurr, F. M. (2020). Mismatches between demographic niches and geographic distributions are strongest in poorly dispersed and highly persistent plant species. Proceedings of the National Academy of Sciences, 117(7), 3663–3669. https://doi.org/10.1073/pnas.1908684117
Pearman, T. R. R., Robert, K., Callaway, A., Hall, R., Lo Iacono, C., & Huvenne, V. A. I. (2020). Improving the predictive capability of benthic species distribution models by incorporating oceanographic data – Towards holistic ecological modelling of a submarine canyon. Progress in Oceanography, 184, 102338. https://doi.org/10.1016/j.pocean.2020.102338
Pichler, M., & Hartig, F. (2021). A new joint species distribution model for faster and more accurate inference of species associations from big community data. Methods in Ecology and Evolution, 12(11), 2159–2173. https://doi.org/10.1111/2041-210X.13687
Razak, M. R., Aris, A. Z., Zakaria, N. A. C., Wee, S. Y., & Ismail, N. A. H. (2021). Accumulation and risk assessment of heavy metals employing species sensitivity distributions in Linggi River, Negeri Sembilan, Malaysia. Ecotoxicology and Environmental Safety, 211, 111905. https://doi.org/10.1016/j.ecoenv.2021.111905
Ricotta, E. E., Lai, Y. L., Babiker, A., Strich, J. R., Kadri, S. S., Lionakis, M. S., Prevots, D. R., & Adjemian, J. (2021). Invasive Candidiasis Species Distribution and Trends, United States, 2009–2017. The Journal of Infectious Diseases, 223(7), 1295–1302. https://doi.org/10.1093/infdis/jiaa502
Robinson, O. J., Ruiz?Gutierrez, Viviana., Reynolds, M. D., Golet, G. H., Strimas?Mackey, M., & Fink, D. (2020). Integrating citizen science data with expert surveys increases accuracy and spatial extent of species distribution models. Diversity and Distributions, 26(8), 976–986. https://doi.org/10.1111/ddi.13068
Rosel, P. E., Wilcox, L. A., Yamada, T. K., & Mullin, K. D. (2021). A new species of baleen whale ( Balaenoptera ) from the Gulf of Mexico, with a review of its geographic distribution. Marine Mammal Science, 37(2), 577–610. https://doi.org/10.1111/mms.12776
Seebens, H., Clarke, D. A., Groom, Q., Wilson, J. R. U., García-Berthou, E., Kühn, I., Roigé, M., Pagad, S., Essl, F., Vicente, J., Winter, M., & McGeoch, M. (2020). A workflow for standardising and integrating alien species distribution data. NeoBiota, 59, 39–59. https://doi.org/10.3897/neobiota.59.53578
Skroblin, A., Carboon, T., Bidu, G., Chapman, N., Miller, M., Taylor, K., Taylor, W., Game, E. T., & Wintle, B. A. (2021). Including indigenous knowledge in species distribution modeling for increased ecological insights. Conservation Biology, 35(2), 587–597. https://doi.org/10.1111/cobi.13373
Stark, J. R., & Fridley, J. D. (2022). Microclimate?based species distribution models in complex forested terrain indicate widespread cryptic refugia under climate change. Global Ecology and Biogeography, 31(3), 562–575. https://doi.org/10.1111/geb.13447
Stubblefield, W. A., Van Genderen, E., Cardwell, A. S., Heijerick, D. G., Janssen, C. R., & De Schamphelaere, K. A. C. (2020). Acute and Chronic Toxicity of Cobalt to Freshwater Organisms: Using a Species Sensitivity Distribution Approach to Establish International Water Quality Standards. Environmental Toxicology and Chemistry, 39(4), 799–811. https://doi.org/10.1002/etc.4662
Tikhonov, G., Opedal, Ø. H., Abrego, N., Lehikoinen, A., De Jonge, M. M. J., Oksanen, J., & Ovaskainen, O. (2020). Joint species distribution modelling with the R ?package H MSC. Methods in Ecology and Evolution, 11(3), 442–447. https://doi.org/10.1111/2041-210X.13345
Yoon, S., & Lee, W.-H. (2021). Methodological analysis of bioclimatic variable selection in species distribution modeling with application to agricultural pests (Metcalfa pruinosa and Spodoptera litura). Computers and Electronics in Agriculture, 190, 106430. https://doi.org/10.1016/j.compag.2021.106430
Yu, H., Cooper, A. R., & Infante, D. M. (2020). Improving species distribution model predictive accuracy using species abundance: Application with boosted regression trees. Ecological Modelling, 432, 109202. https://doi.org/10.1016/j.ecolmodel.2020.109202
Zhao, H., Zhong, Y., Wang, X., Hu, X., Luo, C., Boitt, M., Piiroinen, R., Zhang, L., Heiskanen, J., & Pellikka, P. (2022). Mapping the distribution of invasive tree species using deep one-class classification in the tropical montane landscape of Kenya. ISPRS Journal of Photogrammetry and Remote Sensing, 187, 328–344. https://doi.org/10.1016/j.isprsjprs.2022.03.005
Zhao, S., Wang, Y., Hao, Y., Yin, L., Kuo, C., Chen, H., Li, L., & Peng, S. (2024). Lewis Acid Driving Asymmetric Interfacial Electron Distribution to Stabilize Active Species for Efficient Neutral Water Oxidation. Advanced Materials, 36(7), 2308925. https://doi.org/10.1002/adma.202308925
Zulian, V., Miller, D. A. W., & Ferraz, G. (2021). Integrating citizen?science and planned?survey data improves species distribution estimates. Diversity and Distributions, 27(12), 2498–2509. https://doi.org/10.1111/ddi.13416
Zurell, D., Franklin, J., König, C., Bouchet, P. J., Dormann, C. F., Elith, J., Fandos, G., Feng, X., Guillera?Arroita, G., Guisan, A., Lahoz?Monfort, J. J., Leitão, P. J., Park, D. S., Peterson, A. T., Rapacciuolo, G., Schmatz, D. R., Schröder, B., Serra?Diaz, J. M., Thuiller, W., … Merow, C. (2020). A standard protocol for reporting species distribution models. Ecography, 43(9), 1261–1277. https://doi.org/10.1111/ecog.04960
Authors
Copyright (c) 2025 Donny Juliandri Prihadi, Shazia Akhtar, Zara Ali

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.