Nanomaterials for Catalytic Converters: Improving Air Quality Through Innovation

Haruto Takahashi (1), Riko Kobayashi (2), Nisreen Al-Sayid (3)
(1) University of Tokyo, Japan,
(2) Hitotsubashi University, Japan,
(3) Al-Furat University, Syrian Arab Republic

Abstract

Air pollution remains a critical global issue, largely due to emissions from vehicles. Catalytic converters play a vital role in reducing harmful pollutants, but their efficiency can be improved through innovative materials. Nanomaterials have emerged as promising candidates for enhancing catalytic converter performance. This study aims to investigate the application of nanomaterials in catalytic converters to improve their efficiency in reducing harmful emissions. The research focuses on identifying specific nanomaterials that can enhance catalytic activity and longevity. A comprehensive review of existing literature on nanomaterials used in catalytic converters was conducted. Laboratory experiments were performed to evaluate the catalytic performance of various nanomaterials, including metal nanoparticles and nanocomposites, in simulated exhaust conditions. Emission measurements were analyzed to assess effectiveness. Findings indicate that the incorporation of nanomaterials significantly enhances the catalytic activity of converters. Metal nanoparticles demonstrated improved oxidation and reduction reactions, resulting in higher conversion rates of NOx, CO, and unburned hydrocarbons. The study also identified optimal concentrations and combinations of nanomaterials for maximum efficiency. This research highlights the potential of nanomaterials to transform catalytic converters and improve air quality.


 

Full text article

Generated from XML file

References

Aruguete, D. M., Wallace, A., Blakney, T., Kerr, R., Gerber, G., & Ferko, J. (2020). Palladium release from catalytic converter materials induced by road de-icer components chloride and ferrocyanide. Chemosphere, 245, 125578. https://doi.org/10.1016/j.chemosphere.2019.125578

Bao, J., Li, K., Ning, P., Wang, C., Song, X., Luo, Y., & Sun, X. (2021). Study on the role of copper converter slag in simultaneously removing SO2 and NO using KMnO4/copper converter slag slurry. Journal of Environmental Sciences, 108, 33–43. https://doi.org/10.1016/j.jes.2021.02.004

Buzková Arvajová, A., Boutikos, P., Pe?inka, R., & Ko?í, P. (2020). Global kinetic model of NO oxidation on Pd/?-Al2O3 catalyst including PdO x formation and reduction by CO and C 3 H 6. Applied Catalysis B: Environmental, 260, 118141. https://doi.org/10.1016/j.apcatb.2019.118141

Cobelo-García, A., Mulyani, M. E., & Schäfer, J. (2021). Ultra-trace interference-free analysis of palladium in natural waters by ICP-MS after on-line matrix separation and pre-concentration. Talanta, 232, 122289. https://doi.org/10.1016/j.talanta.2021.122289

Cop, P., Celik, E., Hess, K., Moryson, Y., Klement, P., Elm, M. T., & Smarsly, B. M. (2020). Atomic Layer Deposition of Nanometer-Sized CeO2 Layers in Ordered Mesoporous ZrO2 Films and Their Impact on the Ionic/Electronic Conductivity. ACS Applied Nano Materials, 3(11), 10757–10766. https://doi.org/10.1021/acsanm.0c02060

Danielis, M., Colussi, S., Llorca, J., Dolan, R. H., Cavataio, G., & Trovarelli, A. (2021). Pd/CeO2 Catalysts Prepared by Solvent-free Mechanochemical Route for Methane Abatement in Natural Gas Fueled Vehicles. Industrial & Engineering Chemistry Research, 60(18), 6435–6445. https://doi.org/10.1021/acs.iecr.0c05207

Fedotov, ?. S., Uvarov, V. I., Tsodikov, M. V., Paul, S., Simon, P., Marinova, M., & Dumeignil, F. (2021). Production of styrene by dehydrogenation of ethylbenzene on a [Re, W]/?-Al2O3 (K, Ce)/?-Al2O3 porous ceramic catalytic converter. Chemical Engineering and Processing - Process Intensification, 160, 108265. https://doi.org/10.1016/j.cep.2020.108265

Gusev, A. L., Jabbarov, T. G., Mamedov, Sh. G., Malikov, R., Hajibalaev, N. M., Abdullaeva, S. D., & Abbasov, N. M. (2023). Production of hydrogen and carbon in the petrochemical industry by cracking of hydrocarbons in the process of heat utilization in steel production. International Journal of Hydrogen Energy, 48(40), 14954–14963. https://doi.org/10.1016/j.ijhydene.2022.12.341

Ilyas, S., Srivastava, R. R., & Kim, H. (2022). Mobilization of platinum and palladium from exhausted catalytic converters using bio-cyanide and an ionic-liquid as mass transport carriers. Green Chemistry, 24(13), 5204–5218. https://doi.org/10.1039/D2GC00874B

Jiang, Y., Zhao, X., Huang, J., Li, J., Upputuri, P. K., Sun, H., Han, X., Pramanik, M., Miao, Y., Duan, H., Pu, K., & Zhang, R. (2020). Transformable hybrid semiconducting polymer nanozyme for second near-infrared photothermal ferrotherapy. Nature Communications, 11(1), 1857. https://doi.org/10.1038/s41467-020-15730-x

Jing, Y., Wang, G., Ting, K. W., Maeno, Z., Oshima, K., Satokawa, S., Nagaoka, S., Shimizu, K., & Toyao, T. (2021). Roles of the basic metals La, Ba, and Sr as additives in Al2O3-supported Pd-based three-way catalysts. Journal of Catalysis, 400, 387–396. https://doi.org/10.1016/j.jcat.2021.06.016

Kogut, I., Wollbrink, A., Steiner, C., Wulfmeier, H., El Azzouzi, F.-E., Moos, R., & Fritze, H. (2021). Linking the Electrical Conductivity and Non-Stoichiometry of Thin Film Ce1?xZrxO2?? by a Resonant Nanobalance Approach. Materials, 14(4), 748. https://doi.org/10.3390/ma14040748

Lourenço, A. C., Reis-Machado, A. S., Fortunato, E., Martins, R., & Mendes, M. J. (2020). Sunlight-driven CO2-to-fuel conversion: Exploring thermal and electrical coupling between photovoltaic and electrochemical systems for optimum solar-methane production. Materials Today Energy, 17, 100425. https://doi.org/10.1016/j.mtener.2020.100425

Lu, X., Li, M., Hoang, S., Suib, S. L., & Gao, P.-X. (2021). Solvent effects on the heterogeneous growth of TiO2 nanostructure arrays by solvothermal synthesis. Catalysis Today, 360, 275–283. https://doi.org/10.1016/j.cattod.2020.02.044

Lv, X., Lam, F. L.-Y., & Hu, X. (2022). Developing SrTiO3/TiO2 heterostructure nanotube array for photocatalytic fuel cells with improved efficiency and elucidating the effects of organic substrates. Chemical Engineering Journal, 427, 131602. https://doi.org/10.1016/j.cej.2021.131602

Miao, L., Li, J., Yi, L., Qu, W., Ma, C., Feng, X., Xu, Y., & He, R. (2022). Sustainable reuse of nickel converter slag as a heterogeneous electro-fenton catalyst for treating textile dyeing wastewater: Activity, mechanism and stability assessment. Journal of Cleaner Production, 378, 134421. https://doi.org/10.1016/j.jclepro.2022.134421

Miler, M. (2021). Airborne particles in city bus: Concentrations, sources and simulated pulmonary solubility. Environmental Geochemistry and Health, 43(7), 2757–2780. https://doi.org/10.1007/s10653-020-00770-5

Mousavi, H., Mortazavi, Y., Khodadadi, A. A., Saberi, M. H., & Alirezaei, S. (2021). Enormous enhancement of Pt/SnO2 sensors response and selectivity by their reduction, to CO in automotive exhaust gas pollutants including CO, NOx and C3H8. Applied Surface Science, 546, 149120. https://doi.org/10.1016/j.apsusc.2021.149120

Muscetta, M., Minichino, N., Marotta, R., Andreozzi, R., & Di Somma, I. (2021). Zero-valent palladium dissolution using NaCl/CuCl2 solutions. Journal of Hazardous Materials, 404, 124184. https://doi.org/10.1016/j.jhazmat.2020.124184

Nasrabadi, A. M., Malaie, O., Moghimi, M., Sadeghi, S., & Hosseinalipour, S. M. (2022). Deep learning optimization of a combined CCHP and greenhouse for CO2 capturing; case study of Tehran. Energy Conversion and Management, 267, 115946. https://doi.org/10.1016/j.enconman.2022.115946

Nath, M., Singh, H., & Saxena, A. (2022). Progress of transition metal chalcogenides as efficient electrocatalysts for energy conversion. Current Opinion in Electrochemistry, 34, 100993. https://doi.org/10.1016/j.coelec.2022.100993

Padamata, S. K., Yasinskiy, A. S., Polyakov, P. V., Pavlov, E. A., & Varyukhin, D. Yu. (2020). Recovery of Noble Metals from Spent Catalysts: A Review. Metallurgical and Materials Transactions B, 51(5), 2413–2435. https://doi.org/10.1007/s11663-020-01913-w

Paiva, A. P., Piedras, F. V., Rodrigues, P. G., & Nogueira, C. A. (2022). Hydrometallurgical recovery of platinum-group metals from spent auto-catalysts – Focus on leaching and solvent extraction. Separation and Purification Technology, 286, 120474. https://doi.org/10.1016/j.seppur.2022.120474

Piccirilli, L., Rabell, B., Padilla, R., Riisager, A., Das, S., & Nielsen, M. (2023). Versatile CO2 Hydrogenation–Dehydrogenation Catalysis with a Ru–PNP/Ionic Liquid System. Journal of the American Chemical Society, 145(10), 5655–5663. https://doi.org/10.1021/jacs.2c10399

Plaça, L. F., Vital, P.-L. S., Gomes, L. E., Roveda, A. C., Cardoso, D. R., Martins, C. A., & Wender, H. (2023). Black TiO2 Photoanodes for Direct Methanol Photo Fuel Cells. ACS Applied Materials & Interfaces, 15(37), 43259–43271. https://doi.org/10.1021/acsami.2c04802

Qin, L., Xu, Z., Zhao, B., Zou, C., Chen, W., & Han, J. (2022). Kinetic study on high-temperature gasification of medical plastic waste coupled with hydrogen-rich syngas production catalyzed by steel-converter ash. Journal of the Energy Institute, 102, 14–21. https://doi.org/10.1016/j.joei.2022.02.005

Raza, H., Cheng, J., Lin, C., Majumder, S., Zheng, G., & Chen, G. (2023). High?entropy stabilized oxides derived via a low?temperature template route for high?performance lithium?sulfur batteries. EcoMat, 5(4), e12324. https://doi.org/10.1002/eom2.12324

Usman, O. (2022). Renewable energy and CO2 emissions in G7 countries: Does the level of expenditure on green energy technologies matter? Environmental Science and Pollution Research, 30(10), 26050–26062. https://doi.org/10.1007/s11356-022-23907-8

Wu, H., Wang, Y., Jones, L. O., Liu, W., Zhang, L., Song, B., Chen, X., Stern, C. L., Schatz, G. C., & Stoddart, J. F. (2021). Selective Separation of Hexachloroplatinate(IV) Dianions Based on Exo?Binding with Cucurbit[6]uril. Angewandte Chemie International Edition, 60(32), 17587–17594. https://doi.org/10.1002/anie.202104646

Xue, Y., Liu, X., Zhang, N., Shao, Y., & Xu, C. C. (2023). Enhanced photocatalytic performance of iron oxides@HTCC fabricated from zinc extraction tailings for methylene blue degradation: Investigation of the photocatalytic mechanism. International Journal of Minerals, Metallurgy and Materials, 30(12), 2364–2374. https://doi.org/10.1007/s12613-023-2723-5

Yang, D., Zhu, S., Ma, Y., Zhou, L., Zheng, F., Wang, L., Jiang, J., & Zheng, J. (2022). Emissions of Ammonia and Other Nitrogen-Containing Volatile Organic Compounds from Motor Vehicles under Low-Speed Driving Conditions. Environmental Science & Technology, 56(9), 5440–5447. https://doi.org/10.1021/acs.est.2c00555

Yuan, Y., Wang, J., Adimi, S., Shen, H., Thomas, T., Ma, R., Attfield, J. P., & Yang, M. (2020). Zirconium nitride catalysts surpass platinum for oxygen reduction. Nature Materials, 19(3), 282–286. https://doi.org/10.1038/s41563-019-0535-9

Zhao, Z., Liu, Z., Zhang, A., Yan, X., Xue, W., Peng, B., Xin, H. L., Pan, X., Duan, X., & Huang, Y. (2022). Graphene-nanopocket-encaged PtCo nanocatalysts for highly durable fuel cell operation under demanding ultralow-Pt-loading conditions. Nature Nanotechnology, 17(9), 968–975. https://doi.org/10.1038/s41565-022-01170-9

Zuo, Q., Xie, Y., E, J., Zhu, X., Zhang, B., Tang, Y., Zhu, G., Wang, Z., & Zhang, J. (2020). Effect of different exhaust parameters on NO conversion efficiency enhancement of a dual-carrier catalytic converter in the gasoline engine. Energy, 191, 116521. https://doi.org/10.1016/j.energy.2019.116521

Zuo, Q., Xie, Y., Guan, Q., Zhu, G., E, J., Zhu, X., Tang, Y., Wang, Z., & Chen, W. (2020). Effect of critical dual-carrier structure parameters on performance enhancement of a dual-carrier catalytic converter and the gasoline engine system. Energy Conversion and Management, 204, 112325. https://doi.org/10.1016/j.enconman.2019.112325

Authors

Haruto Takahashi
harutohh@gmail.com (Primary Contact)
Riko Kobayashi
Nisreen Al-Sayid
Takahashi, H., Kobayashi, R., & Al-Sayid, N. (2025). Nanomaterials for Catalytic Converters: Improving Air Quality Through Innovation. Research of Scientia Naturalis, 2(2), 81–91. https://doi.org/10.70177/scientia.v2i2.2010

Article Details