The Role of Organic Chemistry in the Development of Biodegradable Polymers

Bilal Aslam (1), Ahmed Shah (2), Rustambek Sharipov (3)
(1) Lahore University of Science and Technology (LUST), Pakistan,
(2) Aga Khan University, Pakistan,
(3) Tashkent State Economic University, Uzbekistan

Abstract

The increasing environmental concerns associated with plastic waste have prompted significant interest in biodegradable polymers. Organic chemistry plays a crucial role in developing these materials, facilitating the design of polymers that can efficiently degrade in natural environments. This study aims to explore the contributions of organic chemistry to the synthesis and characterization of biodegradable polymers. The focus is on understanding how chemical principles can be applied to create materials with improved degradation rates and functional properties. A comprehensive literature review was conducted, analyzing various biodegradable polymers synthesized through organic chemistry techniques. Experimental work involved synthesizing selected polymers, including polylactic acid (PLA) and polyhydroxyalkanoates (PHA), and evaluating their physical and chemical properties through characterization methods such as spectroscopy and thermal analysis. Findings indicate that organic chemistry enables the tailored design of biodegradable polymers with enhanced properties. The synthesized PLA and PHA exhibited favorable degradation profiles and mechanical strengths, demonstrating their applicability in various fields, including packaging and biomedical applications. This research highlights the essential role of organic chemistry in advancing the development of biodegradable polymers.

Full text article

Generated from XML file

References

Agrahari, A. K., Bose, P., Jaiswal, M. K., Rajkhowa, S., Singh, A. S., Hotha, S., Mishra, N., & Tiwari, V. K. (2021). Cu(I)-Catalyzed Click Chemistry in Glycoscience and Their Diverse Applications. Chemical Reviews, 121(13), 7638–7956. https://doi.org/10.1021/acs.chemrev.0c00920

Antich, C., De Vicente, J., Jiménez, G., Chocarro, C., Carrillo, E., Montañez, E., Gálvez-Martín, P., & Marchal, J. A. (2020). Bio-inspired hydrogel composed of hyaluronic acid and alginate as a potential bioink for 3D bioprinting of articular cartilage engineering constructs. Acta Biomaterialia, 106, 114–123. https://doi.org/10.1016/j.actbio.2020.01.046

Breugst, M., & Reissig, H. (2020). The Huisgen Reaction: Milestones of the 1,3?Dipolar Cycloaddition. Angewandte Chemie International Edition, 59(30), 12293–12307. https://doi.org/10.1002/anie.202003115

Chen, C., Chi, Z., Chong, K. C., Batsanov, A. S., Yang, Z., Mao, Z., Yang, Z., & Liu, B. (2021). Carbazole isomers induce ultralong organic phosphorescence. Nature Materials, 20(2), 175–180. https://doi.org/10.1038/s41563-020-0797-2

Daellenbach, K. R., Uzu, G., Jiang, J., Cassagnes, L.-E., Leni, Z., Vlachou, A., Stefenelli, G., Canonaco, F., Weber, S., Segers, A., Kuenen, J. J. P., Schaap, M., Favez, O., Albinet, A., Aksoyoglu, S., Dommen, J., Baltensperger, U., Geiser, M., El Haddad, I., … Prévôt, A. S. H. (2020). Sources of particulate-matter air pollution and its oxidative potential in Europe. Nature, 587(7834), 414–419. https://doi.org/10.1038/s41586-020-2902-8

Date, M. S., O’Brien, D., Botelho, D. J., Schultz, T. W., Liebler, D. C., Penning, T. M., & Salvito, D. T. (2020). Clustering a Chemical Inventory for Safety Assessment of Fragrance Ingredients: Identifying Read-Across Analogs to Address Data Gaps. Chemical Research in Toxicology, 33(7), 1709–1718. https://doi.org/10.1021/acs.chemrestox.9b00518

De Araújo, F. F., De Paulo Farias, D., Neri-Numa, I. A., & Pastore, G. M. (2021). Polyphenols and their applications: An approach in food chemistry and innovation potential. Food Chemistry, 338, 127535. https://doi.org/10.1016/j.foodchem.2020.127535

Fang, Z.-B., Liu, T.-T., Liu, J., Jin, S., Wu, X.-P., Gong, X.-Q., Wang, K., Yin, Q., Liu, T.-F., Cao, R., & Zhou, H.-C. (2020). Boosting Interfacial Charge-Transfer Kinetics for Efficient Overall CO2 Photoreduction via Rational Design of Coordination Spheres on Metal–Organic Frameworks. Journal of the American Chemical Society, 142(28), 12515–12523. https://doi.org/10.1021/jacs.0c05530

Funabashi, M., Grove, T. L., Wang, M., Varma, Y., McFadden, M. E., Brown, L. C., Guo, C., Higginbottom, S., Almo, S. C., & Fischbach, M. A. (2020). A metabolic pathway for bile acid dehydroxylation by the gut microbiome. Nature, 582(7813), 566–570. https://doi.org/10.1038/s41586-020-2396-4

Grattan, L. M., Holobaugh, S., & Morris, J. G. (2016). Harmful algal blooms and public health. Harmful Algae, 57, 2–8. https://doi.org/10.1016/j.hal.2016.05.003

Guo, L., Lamb, K. J., & North, M. (2021). Recent developments in organocatalysed transformations of epoxides and carbon dioxide into cyclic carbonates. Green Chemistry, 23(1), 77–118. https://doi.org/10.1039/D0GC03465G

Hong, F.-L., & Ye, L.-W. (2020). Transition Metal-Catalyzed Tandem Reactions of Ynamides for Divergent N-Heterocycle Synthesis. Accounts of Chemical Research, 53(9), 2003–2019. https://doi.org/10.1021/acs.accounts.0c00417

Huang, H., Pradhan, B., Hofkens, J., Roeffaers, M. B. J., & Steele, J. A. (2020). Solar-Driven Metal Halide Perovskite Photocatalysis: Design, Stability, and Performance. ACS Energy Letters, 5(4), 1107–1123. https://doi.org/10.1021/acsenergylett.0c00058

Jiang, Z., Xu, X., Ma, Y., Cho, H. S., Ding, D., Wang, C., Wu, J., Oleynikov, P., Jia, M., Cheng, J., Zhou, Y., Terasaki, O., Peng, T., Zan, L., & Deng, H. (2020). Filling metal–organic framework mesopores with TiO2 for CO2 photoreduction. Nature, 586(7830), 549–554. https://doi.org/10.1038/s41586-020-2738-2

Karthik, K. V., Raghu, A. V., Reddy, K. R., Ravishankar, R., Sangeeta, M., Shetti, N. P., & Reddy, C. V. (2022). Green synthesis of Cu-doped ZnO nanoparticles and its application for the photocatalytic degradation of hazardous organic pollutants. Chemosphere, 287, 132081. https://doi.org/10.1016/j.chemosphere.2021.132081

Kaspar, C. W., & Tamplin, M. L. (1993). Effects of temperature and salinity on the survival of Vibrio vulnificus in seawater and shellfish. Applied and Environmental Microbiology, 59(8), 2425–2429. https://doi.org/10.1128/aem.59.8.2425-2429.1993

Laudadio, G., Deng, Y., Van Der Wal, K., Ravelli, D., Nuño, M., Fagnoni, M., Guthrie, D., Sun, Y., & Noël, T. (2020). C(sp3 )–H functionalizations of light hydrocarbons using decatungstate photocatalysis in flow. Science, 369(6499), 92–96. https://doi.org/10.1126/science.abb4688

Lim, S., Shi, J. L., Von Gunten, U., & McCurry, D. L. (2022). Ozonation of organic compounds in water and wastewater: A critical review. Water Research, 213, 118053. https://doi.org/10.1016/j.watres.2022.118053

Lu, J., Zhang, H., Hou, J., Li, X., Hu, X., Hu, Y., Easton, C. D., Li, Q., Sun, C., Thornton, A. W., Hill, M. R., Zhang, X., Jiang, G., Liu, J. Z., Hill, A. J., Freeman, B. D., Jiang, L., & Wang, H. (2020). Efficient metal ion sieving in rectifying subnanochannels enabled by metal–organic frameworks. Nature Materials, 19(7), 767–774. https://doi.org/10.1038/s41563-020-0634-7

Luo, H., Liu, C., He, D., Xu, J., Sun, J., Li, J., & Pan, X. (2022). Environmental behaviors of microplastics in aquatic systems: A systematic review on degradation, adsorption, toxicity and biofilm under aging conditions. Journal of Hazardous Materials, 423, 126915. https://doi.org/10.1016/j.jhazmat.2021.126915

Mahdi, M. A., Yousefi, S. R., Jasim, L. S., & Salavati-Niasari, M. (2022). Green synthesis of DyBa2Fe3O7.988/DyFeO3 nanocomposites using almond extract with dual eco-friendly applications: Photocatalytic and antibacterial activities. International Journal of Hydrogen Energy, 47(31), 14319–14330. https://doi.org/10.1016/j.ijhydene.2022.02.175

Motes, M. L., DePaola, A., Cook, D. W., Veazey, J. E., Hunsucker, J. C., Garthright, W. E., Blodgett, R. J., & Chirtel, S. J. (1998). Influence of Water Temperature and Salinity on Vibrio vulnificus in Northern Gulf and Atlantic Coast Oysters ( Crassostrea virginica ). Applied and Environmental Microbiology, 64(4), 1459–1465. https://doi.org/10.1128/AEM.64.4.1459-1465.1998

Oliver, J. D. (2013). Vibrio vulnificus: Death on the Half Shell. A Personal Journey with the Pathogen and its Ecology. Microbial Ecology, 65(4), 793–799. https://doi.org/10.1007/s00248-012-0140-9

Orooji, Y., Ghanbari, M., Amiri, O., & Salavati-Niasari, M. (2020). Facile fabrication of silver iodide/graphitic carbon nitride nanocomposites by notable photo-catalytic performance through sunlight and antimicrobial activity. Journal of Hazardous Materials, 389, 122079. https://doi.org/10.1016/j.jhazmat.2020.122079

Qiu, X.-F., Zhu, H.-L., Huang, J.-R., Liao, P.-Q., & Chen, X.-M. (2021). Highly Selective CO2 Electroreduction to C2 H4 Using a Metal–Organic Framework with Dual Active Sites. Journal of the American Chemical Society, 143(19), 7242–7246. https://doi.org/10.1021/jacs.1c01466

Ren, X., Tang, J., Liu, X., & Liu, Q. (2020). Effects of microplastics on greenhouse gas emissions and the microbial community in fertilized soil. Environmental Pollution, 256, 113347. https://doi.org/10.1016/j.envpol.2019.113347

Röckl, J. L., Pollok, D., Franke, R., & Waldvogel, S. R. (2020). A Decade of Electrochemical Dehydrogenative C,C-Coupling of Aryls. Accounts of Chemical Research, 53(1), 45–61. https://doi.org/10.1021/acs.accounts.9b00511

Shahid, A., Malik, S., Zhu, H., Xu, J., Nawaz, M. Z., Nawaz, S., Asraful Alam, Md., & Mehmood, M. A. (2020). Cultivating microalgae in wastewater for biomass production, pollutant removal, and atmospheric carbon mitigation; a review. Science of The Total Environment, 704, 135303. https://doi.org/10.1016/j.scitotenv.2019.135303

Shang, H., Zhou, X., Dong, J., Li, A., Zhao, X., Liu, Q., Lin, Y., Pei, J., Li, Z., Jiang, Z., Zhou, D., Zheng, L., Wang, Y., Zhou, J., Yang, Z., Cao, R., Sarangi, R., Sun, T., Yang, X., … Li, Y. (2020). Engineering unsymmetrically coordinated Cu-S1N3 single atom sites with enhanced oxygen reduction activity. Nature Communications, 11(1), 3049. https://doi.org/10.1038/s41467-020-16848-8

Sharma, A., Shukla, A., Attri, K., Kumar, M., Kumar, P., Suttee, A., Singh, G., Barnwal, R. P., & Singla, N. (2020). Global trends in pesticides: A looming threat and viable alternatives. Ecotoxicology and Environmental Safety, 201, 110812. https://doi.org/10.1016/j.ecoenv.2020.110812

Terrer, C., Phillips, R. P., Hungate, B. A., Rosende, J., Pett-Ridge, J., Craig, M. E., Van Groenigen, K. J., Keenan, T. F., Sulman, B. N., Stocker, B. D., Reich, P. B., Pellegrini, A. F. A., Pendall, E., Zhang, H., Evans, R. D., Carrillo, Y., Fisher, J. B., Van Sundert, K., Vicca, S., & Jackson, R. B. (2021). A trade-off between plant and soil carbon storage under elevated CO2. Nature, 591(7851), 599–603. https://doi.org/10.1038/s41586-021-03306-8

Tie, Z., Liu, L., Deng, S., Zhao, D., & Niu, Z. (2020). Proton Insertion Chemistry of a Zinc–Organic Battery. Angewandte Chemie International Edition, 59(12), 4920–4924. https://doi.org/10.1002/anie.201916529

Wang, Y., Rao, L., Wang, P., Shi, Z., & Zhang, L. (2020). Photocatalytic activity of N-TiO2/O-doped N vacancy g-C3N4 and the intermediates toxicity evaluation under tetracycline hydrochloride and Cr(VI) coexistence environment. Applied Catalysis B: Environmental, 262, 118308. https://doi.org/10.1016/j.apcatb.2019.118308

Wang, Y., Wen, X., Jia, Y., Huang, M., Wang, F., Zhang, X., Bai, Y., Yuan, G., & Wang, Y. (2020). Piezo-catalysis for nondestructive tooth whitening. Nature Communications, 11(1), 1328. https://doi.org/10.1038/s41467-020-15015-3

Wei, W., & Algeo, T. J. (2020). Elemental proxies for paleosalinity analysis of ancient shales and mudrocks. Geochimica et Cosmochimica Acta, 287, 341–366. https://doi.org/10.1016/j.gca.2019.06.034

Zhang, D., Liu, X., Huang, W., Li, J., Wang, C., Zhang, D., & Zhang, C. (2020). Microplastic pollution in deep-sea sediments and organisms of the Western Pacific Ocean. Environmental Pollution, 259, 113948. https://doi.org/10.1016/j.envpol.2020.113948

Zhao, C., Zhang, P., Zhou, J., Qi, S., Yamauchi, Y., Shi, R., Fang, R., Ishida, Y., Wang, S., Tomsia, A. P., Liu, M., & Jiang, L. (2020). Layered nanocomposites by shear-flow-induced alignment of nanosheets. Nature, 580(7802), 210–215. https://doi.org/10.1038/s41586-020-2161-8

Authors

Bilal Aslam
bilalasa@gmail.com (Primary Contact)
Ahmed Shah
Rustambek Sharipov
Aslam, B., Shah, A., & Sharipov, R. (2025). The Role of Organic Chemistry in the Development of Biodegradable Polymers. Research of Scientia Naturalis, 2(3), 102–111. https://doi.org/10.70177/scientia.v2i3.2012

Article Details