Personalizing Learning Paths: A Study of Adaptive Learning Algorithms and Their Effects on Student Outcomes
Abstract
Background. In recent years, the demand for personalized learning experiences has increased, particularly in the context of adaptive learning algorithms that cater to individual student needs. However, there is still a lack of comprehensive studies that evaluate the effectiveness of these algorithms on student outcomes. This study seeks to address this gap by examining how adaptive learning algorithms can personalize learning paths and improve academic performance.
Purpose. The research aims to explore the correlation between the implementation of these algorithms and student engagement, retention, and success rates.
Method. To achieve this, a quantitative research method was employed, involving the collection of data from 200 students in an online learning environment. The students were divided into two groups: one using a traditional learning model and the other exposed to adaptive learning algorithms. Student outcomes, including engagement metrics, test scores, and retention rates, were tracked over a semester.
Results. The results revealed a significant improvement in student engagement and academic performance in the group that utilized adaptive learning algorithms compared to the traditional learning group. Moreover, students in the adaptive learning group demonstrated higher retention rates and greater satisfaction with their learning experiences.
Conclusion. In conclusion, the study suggests that adaptive learning algorithms play a crucial role in enhancing personalized learning paths, ultimately leading to improved student outcomes. These findings highlight the importance of integrating adaptive technologies in modern educational systems to foster more effective learning environments.
Full text article
References
Adako, O., Adeusi, O., & Alaba, P. (2024). Integrating AI tools for enhanced autism education: A comprehensive review. International Journal of Developmental Disabilities. Scopus. https://doi.org/10.1080/20473869.2024.2392983
Alam, S., Kumar, S., Khursheed, Z., Mahato, H. K., Bashar, S., & Suman, A. (2024). Designing an AI driven intelligent Tutorial System. In Mahato G.C., S. S., & Dash S. (Eds.), Int. Conf. Recent Trends Comput. Sci. Technol., ICRTCST - Proc. (pp. 585–588). Institute of Electrical and Electronics Engineers Inc.; Scopus. https://doi.org/10.1109/ICRTCST61793.2024.10578476
Ashok, M., Chinnasamy, A., Ramasamy, K., Gokul, Y. H., & Douglas, J. B. (2022). A Systematic Survey on Personalized Learning Framework based Recommendation System. Int. Conf. Data Sci., Agents Artif. Intel., ICDSAAI. 2022 International Conference on Data Science, Agents and Artificial Intelligence, ICDSAAI 2022. Scopus. https://doi.org/10.1109/ICDSAAI55433.2022.10028809
Azofeifa, J. D., Rueda-Castro, V., Camacho-Zuñiga, C., Chans, G. M., Membrillo-Hernández, J., & Caratozzolo, P. (2024). Future skills for Industry 4.0 integration and innovative learning for continuing engineering education. Frontiers in Education, 9. Scopus. https://doi.org/10.3389/feduc.2024.1412018
Bakardjieva, T., Spasova, V., Ivanova, A., & Rakitina, E. (2022). KM agent approach to the march of industry 4.0. In Nikolov V., Petrov M., Shakev N., & Ahmed S. (Eds.), AIP Conf. Proc. (Vol. 2449). American Institute of Physics Inc.; Scopus. https://doi.org/10.1063/5.0091444
Balart, T., & Shryock, K. J. (2024). A Framework for Integrating AI into Engineering Education, Empowering Human-Centered Approach for Industry 5.0. IEEE Global Eng. Edu. Conf., EDUCON. IEEE Global Engineering Education Conference, EDUCON. Scopus. https://doi.org/10.1109/EDUCON60312.2024.10578796
Bennani, S., Maalel, A., Ghezala, H. B., & Daouahi, A. (2024). Towards an Adaptive Gamification Recommendation Approach for Interactive Learning Environments. In Lecture. Notes. Data Eng. Commun. Tech. (Vol. 199, pp. 341–352). Springer Science and Business Media Deutschland GmbH; Scopus. https://doi.org/10.1007/978-3-031-57840-3_31
Chandra, K. R., Muthumanikandan, M., Kathyayini, S., Akhila, H. G., Pathak, P., & Shivaprakash, S. (2024). The Impact of Artificial Intelligence Tools and Techniques for Effective English Language Education. Nanotechnology Perceptions, 20(S7), 897–903. Scopus. https://doi.org/10.62441/nano-ntp.v20iS7.74
Chang, W.-L., & Sun, J. C.-Y. (2024). Evaluating AI’s impact on self-regulated language learning: A systematic review. System, 126. Scopus. https://doi.org/10.1016/j.system.2024.103484
Chirtsov, A., Alekseeva, O., Chirtsov, T., & Dmitry, N. (2022). Digital teaching system StudyWays© as a new educational concept. In Jemni M., Kallel I., & Akkari A. (Eds.), IEEE Global Eng. Edu. Conf., EDUCON (Vols. 2022-March, pp. 739–745). IEEE Computer Society; Scopus. https://doi.org/10.1109/EDUCON52537.2022.9766481
Faruqui, S. H. A., Tasnim, N., Basith, I. I., Obeidat, S. M., & Yildiz, F. (2024). Board 46: Integrating AI in Higher-Education Protocol for a Pilot Study with’SAMCares An Adaptive Learning Hub’. ASEE Annu. Conf. Expos. Conf. Proc. ASEE Annual Conference and Exposition, Conference Proceedings. Scopus. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85202055079&partnerID=40&md5=0bc78f35f2fdaaa4d98596d20bd6a702
Frasson C., Mylonas P., & Troussas C. (Eds.). (2023). 19th International Conference on Augmented Intelligence and Intelligent Tutoring Systems, ITS 2023. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 13891 LNCS. Scopus. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85163386522&partnerID=40&md5=c29042f8a9c7bcf5b45ff5241a0d5307
George Amalarethinam, D. I., & Emima, A. (2024). A Survey on Tools and Techniques of Classification in Educational Data Mining. In Mahmud M., Ben-Abdallah H., Kaiser M.S., Ahmed M.R., & Zhong N. (Eds.), Commun. Comput. Info. Sci.: Vol. 2065 CCIS (pp. 95–107). Springer Science and Business Media Deutschland GmbH; Scopus. https://doi.org/10.1007/978-3-031-68639-9_7
Goto, T., Kano, K., & Shiose, T. (2024). Achievement Goal Impacts Students’ Preferences for “Personalized Problems” in Computer-Adaptive Tests1. Japanese Psychological Research, 66(2), 154–165. Scopus. https://doi.org/10.1111/jpr.12485
Guvin Felcida, F. J., & Parameswaran, D. (2024). An Analytical Study on Developing Language Skills among L2 Learners Through Digital Teaching and Learning. Traduction et Langues, 23(1), 88–107. Scopus. https://doi.org/10.52919/translang.v23i1.971
Hamrouni, A., & Bendella, F. (2023). A taxonomy of learner-player’s emotions in serious games. International Journal of Serious Games, 10(4), 17–32. Scopus. https://doi.org/10.17083/ijsg.v10i4.637
Hamzah, F., Abdullah, A. H., & Ma, W. (2024). Advancing Education through Technology Integration, Innovative Pedagogies and Emerging Trends: A Systematic Literature Review. Journal of Advanced Research in Applied Sciences and Engineering Technology, 41(1), 44–63. Scopus. https://doi.org/10.37934/araset.41.1.4463
Hassan, J. U., Missen, M. M. S., Firdous, A., Maham, A., & Ikram, A. (2023). An Adaptive M-Learning Usability Model for Facilitating M-Learning for Slow Learners. International Journal of Interactive Mobile Technologies, 17(19), 48–69. Scopus. https://doi.org/10.3991/ijim.v17i19.42153
Hong W. & Kanaparan G. (Eds.). (2024). 18th International Conference on Computer Science and Education, ICCSE 2023. Communications in Computer and Information Science, 2024 CCIS. Scopus. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85188014222&partnerID=40&md5=2fe807a9c8d69591c05e0675af56aa40
Huang, S., Xu, J., Sang, Q., & Shao, Z. (2023). Research on the digital literacy model construction and practice of higher vocational students in the digital era. ACM Int. Conf. Proc. Ser., 370–377. Scopus. https://doi.org/10.1145/3629296.3629356
Huang, Y. T., & Chu, C. N. (2024). The Development of Bluetooth Speakers with Independent Control for the Intervals Training of Aural Skills. In Hung J.C., Yen N., & Chang J. (Eds.), Lect. Notes Electr. Eng.: Vol. 1133 LNEE (pp. 245–252). Springer Science and Business Media Deutschland GmbH; Scopus. https://doi.org/10.1007/978-981-99-9416-8_41
Imran, M., Almusharraf, N., Ahmed, S., & Mansoor, M. I. (2024). Personalization of E-Learning: Future Trends, Opportunities, and Challenges. International Journal of Interactive Mobile Technologies, 18(10), 4–18. Scopus. https://doi.org/10.3991/ijim.v18i10.47053
Jawwad, A. K. A., Turab, N., Al-Mahadin, G., Owida, H. A., & Al-Nabulsi, J. (2024). A perspective on smart universities as being downsized smart cities: A technological view of internet of thing and big data. Indonesian Journal of Electrical Engineering and Computer Science, 35(2), 1162–1170. Scopus. https://doi.org/10.11591/ijeecs.v35.i2.pp1162-1170
Jayasiriwardene, S., & Meedeniya, D. (2022). A Knowledge-based Adaptive Algorithm to Recommend Interactive Learning Assessments. ICARC - Int. Conf. Adv. Res. Comput.: Towards Digit. Empower. Soc., 379–384. Scopus. https://doi.org/10.1109/ICARC54489.2022.9753913
Junpeng, P. (2024). Adaptive Diagnostics for Customized Learning Pathways of Students in the Mathematical Structure of Observed Learning Outcomes: A Supervised Machine Learning Classification Algorithm. Int. Tech. Conf. Circuits/Syst., Comput., Commun., ITC-CSCC. 2024 International Technical Conference on Circuits/Systems, Computers, and Communications, ITC-CSCC 2024. Scopus. https://doi.org/10.1109/ITC-CSCC62988.2024.10628274
Kaswan, K. S., Dhatterwal, J. S., & Ojha, R. P. (2024). AI in personalized learning. In Advances in Technological Innovations in High. Education: Theory and Practices (pp. 103–117). CRC Press; Scopus. https://doi.org/10.1201/9781003376699-9
Khiat, H., & Vogel, S. (2022). A self-regulated learning management system: Enhancing performance, motivation and reflection in learning. Journal of University Teaching and Learning Practice, 19(2), 43–59. Scopus. https://doi.org/10.53761/1.19.2.4
Lim, L., Lim, S. H., & Lim, W. Y. R. (2022). A Rasch Analysis of Students’ Academic Motivation toward Mathematics in an Adaptive Learning System. Behavioral Sciences, 12(7). Scopus. https://doi.org/10.3390/bs12070244
Makharia, R., Kim, Y. C., Bin Jo, S., Kim, M. A., Jain, A., Agarwal, P., Srivastava, A., Agarwal, A. V., & Agarwal, P. (2024). AI Tutor Enhanced with Prompt Engineering and Deep Knowledge Tracing. IEEE Int. Conf. Interdiscip. Approaches Technol. Manag. Soc. Innov., IATMSI. 2024 IEEE International Conference on Interdisciplinary Approaches in Technology and Management for Social Innovation, IATMSI 2024. Scopus. https://doi.org/10.1109/IATMSI60426.2024.10503187
Nurhasanah, F., Nugraheni, A. S. C., Kusharjanta, B., Ardiansyah, R., Widono, S., & Saddhono, K. (2024). A Design of Virtual Classrooms Through AI, ML and DL to Improve the Level of Learning. Int. Conf. Adv. Comput. Innov. Technol. Eng. ICACITE, 940–945. Scopus. https://doi.org/10.1109/ICACITE60783.2024.10616641
Oliveira, P. F., & Matos, P. (2024). An Intelligent Environment Application Case to Manage Comfort Preferences, at an University Residence. In Arai K. (Ed.), Lect. Notes Networks Syst.: Vol. 1018 LNNS (pp. 36–44). Springer Science and Business Media Deutschland GmbH; Scopus. https://doi.org/10.1007/978-3-031-62269-4_3
Oqaidi, K., Aouhassi, S., & Mansouri, K. (2024). Are Chatbots the Future of Higher Education? Unveiling Their Impact, Challenges, and Prospects. In Benhala B., Raihani A., & Qbadou M. (Eds.), Int. Conf. Innov. Res. Appl. Sci., Eng. Technol., IRASET. Institute of Electrical and Electronics Engineers Inc.; Scopus. https://doi.org/10.1109/IRASET60544.2024.10548820
Palermo, E. H., Young, A. V., Deswert, S., Brown, A., Goldberg, M., Sultanik, E., Tan, J., Mazefsky, C. A., Brookman-Frazee, L., McPartland, J. C., Goodwin, M. S., Pennington, J., Marcus, S. C., Beidas, R. S., Mandell, D. S., & Nuske, H. J. (2023). A Digital Mental Health App Incorporating Wearable Biosensing for Teachers of Children on the Autism Spectrum to Support Emotion Regulation: Protocol for a Pilot Randomized Controlled Trial. JMIR Research Protocols, 12. Scopus. https://doi.org/10.2196/45852
Rahman, M. M., Al Salem, H. A., Yeom, S., Ollington, N., Ollington, R., & Rahman, M. M. (2023). A Preliminary Study on Learners’ Personal Traits for Modelling Learner Profiles in ITS: A Sensor-free Approach. IEEE Symp. Comput. Appl. Ind. Electron., ISCAIE, 287–292. Scopus. https://doi.org/10.1109/ISCAIE57739.2023.10165219
Raja, S., Jebadurai, D. J., Ivan, L., Mykola, R. V., Ruslan, K., & Nadiia, P. R. (2024). Impact of Artificial Intelligence in Students’ Learning Life. In Stud. Syst. Decis. Control (Vol. 516, pp. 3–17). Springer Science and Business Media Deutschland GmbH; Scopus. https://doi.org/10.1007/978-3-031-49544-1_1
Samala, A. D., Zhai, X., Aoki, K., Bojic, L., & Zikic, S. (2024). An In-Depth Review of ChatGPT’s Pros and Cons for Learning and Teaching in Education. International Journal of Interactive Mobile Technologies, 18(2), 96–117. Scopus. https://doi.org/10.3991/ijim.v18i02.46509
Shafique, M., Fazli, A. F., Qureshi, L., & Saleem, W. (2023). Adaptive Learning for Standardised Test Preparation. Int. Multi Top. Conf., INMIC - Proc. 2023 25th International Multi Topic Conference, INMIC 2023 - Proceedings. Scopus. https://doi.org/10.1109/INMIC60434.2023.10465975
Shoeibi, N., García-Peñalvo, F. J., & Therón Sánchez, R. (2024). Transforming Education Through Integrating AI: A Systematic Mapping Review for Enhanced User Experience. In Lect. Notes Educ. Technol.: Vol. Part F3283 (pp. 176–189). Springer Science and Business Media Deutschland GmbH; Scopus. https://doi.org/10.1007/978-981-97-1814-6_17
Slavin, O. (2024). Features of Building Automated Educational Systems with Virtual and Augmented Reality Technologies. In Silhavy R. & Silhavy P. (Eds.), Lect. Notes Networks Syst.: Vol. 935 LNNS (pp. 25–33). Springer Science and Business Media Deutschland GmbH; Scopus. https://doi.org/10.1007/978-3-031-54820-8_3
Soundarya, N. P., Kumar, T., & Gupta, H. K. (2024). A Framework to Deploy Immersive Technologies for Effective Education. In Alareeni B. & Hamdan A. (Eds.), Lect. Notes Networks Syst.: Vol. 1080 LNNS (pp. 216–225). Springer Science and Business Media Deutschland GmbH; Scopus. https://doi.org/10.1007/978-3-031-67444-0_21
Sun, J., Du, S., Liu, Z., Yu, F., Liu, S., & Shen, X. (2024). Weighted Heterogeneous Graph-Based Three-View Contrastive Learning for Knowledge Tracing in Personalized e-Learning Systems. IEEE Transactions on Consumer Electronics, 70(1), 2838–2847. Scopus. https://doi.org/10.1109/TCE.2023.3293953
Trushin, S. M., & Ermakova, V. I. (2024). Application of Adaptive Assessment Methods in Digital Educational Technologies: Modeling and Statistical Analysis of Student Work Outcomes. Proc. - Int. Conf. Technol. Enhanc. Learn. High. Educ., TELE, 214–218. Scopus. https://doi.org/10.1109/TELE62556.2024.10605650
Ueno, A., Curtis, L., Wood, R., Al-Emran, M., & Yu, C. (2024). A Review of the Metaverse in Higher Education: Opportunities, Challenges and Future Research Agenda. In Stud. Comput. Intell. (Vol. 1161, pp. 1–16). Springer Science and Business Media Deutschland GmbH; Scopus. https://doi.org/10.1007/978-3-031-61463-7_1
Vashishth, T. K., Sharma, V., Sharma, K. K., Kumar, B., Chaudhary, S., & Panwar, R. (2024). AIoT in Education Transforming Learning Environments and Educational Technology. In Artificial Intelligence of Things (AIoT) for Productivity and Organiz. Trans. (pp. 72–107). IGI Global; Scopus. https://doi.org/10.4018/979-8-3693-0993-3.ch004
Wong L.-H., Hayashi Y., Collazos C.A., Alvarez C., Zurita G., & Baloian N. (Eds.). (2022). 28th International Conference on Collaboration Technologies and Social Computing, CollabTech 2022. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 13632 LNCS. Scopus. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85142658560&partnerID=40&md5=dc7fd1102a3868942f2476c454c4cf15
Xia, X., & Qi, W. (2024). Multilayer knowledge graph construction and learning behavior routing guidance based on implicit relationships of MOOCs. Technological Forecasting and Social Change, 204. Scopus. https://doi.org/10.1016/j.techfore.2024.123442
Yuldashev, S., Akramov, M., Tursunova, F., Abdullaeva, K., Shakhmurodova, D., & Ubaydullayev, A. (2024). A Development of AI Connected System with Adaptive Assessments Method for Evaluation Methods in Education Field. Int. Conf. Adv. Comput. Innov. Technol. Eng. ICACITE, 826–830. Scopus. https://doi.org/10.1109/ICACITE60783.2024.10616960
Zhang, D., Gao, S., & Ren, L. (2023). A study on the mechanisms of teachers’ academic emotions and motivational beliefs on learning engagement in the context of online training. Frontiers in Psychology, 14. Scopus. https://doi.org/10.3389/fpsyg.2023.1255660
Authors
Copyright (c) 2024 Nur Hakim, Bella Jastacia, Ahmed Al- Mansoori

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.