Designing Inclusive Hybrid Learning Using Eye-Tracking and Adaptive UX: A Neuroadaptive Framework

Alida Ntahonkiriye (1), Charles Ndikumana (2), Denise Mutoni (3)
(1) Université Lumière de Bujumbura, Burundi,
(2) Hope Africa University, Burundi,
(3) University of Ngozi, Burundi

Abstract

Background. The growing diversity of learners in hybrid education environments necessitates adaptive systems that respond to individual cognitive and emotional states in real time. Traditional user experience (UX) models often fail to accommodate neurodivergent users or those with varying attention patterns and processing styles.
Purpose. This study proposes a neuroadaptive framework that integrates eye-tracking technology and adaptive UX design to create inclusive hybrid learning experiences.
Method. The research aims to examine how real-time gaze data can inform interface adjustments that support engagement, accessibility, and cognitive load management. Employing a mixed-method design, the study involved 58 university students who interacted with a prototype learning platform embedded with eye-tracking sensors and adaptive UX features. Quantitative data from gaze patterns, task completion, and performance metrics were complemented by qualitative feedback through user interviews and think-aloud protocols. Results. Results indicate that the neuroadaptive interface significantly improved task efficiency, learner focus, and subjective usability across diverse cognitive profiles.
Conclusion. The study concludes that This study demonstrates that real-time biometric feedback can personalize hybrid learning experiences and improve inclusivit.

Full text article

Generated from XML file

References

Adam, M. T. P., Bonenberger, L., Gimpel, H., & Lanzl, J. (2024). Human-Centered Design and Evaluation of a NeuroIS Tool for Flow Support. Journal of the Association for Information Systems, 25(4), 936–961. https://doi.org/10.17705/1JAIS.00855

Beauchemin, N., Karran, A. J., Boasen, J., Tadson, B., Charland, P., Courtemanche, F., Sénécal, S., & Léger, P.-M. (2024). RACE: A Real-Time Architecture for Cognitive State Estimation, Development Overview and Study in Progress. In D. F.D., R. R., R. R., B. J.V., L. P.-M., R. A.B., & M.-P. G.R. (Eds.), Lecture Notes in Information Systems and Organisation (Vol. 68, pp. 9–20). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/978-3-031-58396-4_2

Chohan, M. O., Fein, H., Mirro, S., O’Reilly, K. C., & Veenstra-VanderWeele, J. (2023). Repeated chemogenetic activation of dopaminergic neurons induces reversible changes in baseline and amphetamine-induced behaviors. Psychopharmacology, 240(12), 2545–2560. https://doi.org/10.1007/s00213-023-06448-x

Conrad, C., & Newman, A. J. (2022). Towards Mind Wandering Adaptive Online Learning and Virtual Work Experiences. In D. F.D., R. R., R. R., vom B. J., L. P.-M., R. A.B., & M.-P. G.R. (Eds.), Lecture Notes in Information Systems and Organisation (Vol. 58, pp. 261–267). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/978-3-031-13064-9_27

Fabrikant, S. I. (2023). Neuroadaptive LBS: towards human-, context-, and task-adaptive mobile geographic information displays to support spatial learning for pedestrian navigation. Journal of Location Based Services, 17(4), 340–354. https://doi.org/10.1080/17489725.2023.2258100

Fairclough, S. (2023). Neuroadaptive Technology and the Self: a Postphenomenological Perspective. Philosophy and Technology, 36(2). https://doi.org/10.1007/s13347-023-00636-5

Florence, L., Lassi, D. L. S., Kortas, G. T., Lima, D. R., de Azevedo-Marques Périco, C., Andrade, A. G., Torales, J., Ventriglio, A., De Berardis, D., De Aquino, J. P., & Castaldelli-Maia, J. M. (2022). Brain Correlates of the Alcohol Use Disorder Pharmacotherapy Response: A Systematic Review of Neuroimaging Studies. Brain Sciences, 12(3). https://doi.org/10.3390/brainsci12030386

Gao, Z., Yu, W., & Yan, J. (2024). Neuroadaptive Fault-Tolerant Control Embedded With Diversified Activating Functions With Application to Auto-Driving Vehicles Under Fading Actuation. IEEE Transactions on Neural Networks and Learning Systems, 35(5), 6255–6264. https://doi.org/10.1109/TNNLS.2023.3248100

Gkintoni, E., Antonopoulou, H., Sortwell, A., & Halkiopoulos, C. (2025). Challenging Cognitive Load Theory: The Role of Educational Neuroscience and Artificial Intelligence in Redefining Learning Efficacy. Brain Sciences, 15(2). https://doi.org/10.3390/brainsci15020203

Grubov, V. V, Khramova, M. V, Goman, S., Badarin, A. A., Kurkin, S. A., Andrikov, D. A., Pitsik, E., Antipov, V., Petushok, E., Brusinskii, N., Bukina, T., Fedorov, A. A., & Hramov, A. E. (2024). Open-Loop Neuroadaptive System for Enhancing Student’s Cognitive Abilities in Learning. IEEE Access, 12, 49034–49049. https://doi.org/10.1109/ACCESS.2024.3383847

Hashim, H. A., & Vamvoudakis, K. G. (2024). Adaptive Neural Network Stochastic-Filter-Based Controller for Attitude Tracking With Disturbance Rejection. IEEE Transactions on Neural Networks and Learning Systems, 35(1), 1217–1227. https://doi.org/10.1109/TNNLS.2022.3183026

Hejrati, M., & Mattila, J. (2024). Physical Human-Robot Interaction Control of an Upper Limb Exoskeleton with a Decentralized Neuroadaptive Control Scheme. IEEE Transactions on Control Systems Technology, 32(3), 905–918. https://doi.org/10.1109/TCST.2023.3338112

Legeay, S., Caetano, G., Figueiredo, P., & Vourvopoulos, A. (2022). NeuXus: A Biosignal Processing and Classification Pipeline for Real-Time Brain-Computer Interaction. MELECON 2022 - IEEE Mediterranean Electrotechnical Conference, Proceedings, 424–429. https://doi.org/10.1109/MELECON53508.2022.9842925

Nath, K., Bera, M. K., & Jagannathan, S. (2023). Concurrent Learning-Based Neuroadaptive Robust Tracking Control of Wheeled Mobile Robot: An Event-Triggered Design. IEEE Transactions on Artificial Intelligence, 4(6), 1514–1525. https://doi.org/10.1109/TAI.2022.3207133

Sarkar, N., & Deb, A. K. (2024). Dynamic event-triggered neuroadaptive fault-tolerant control of quadrotor UAV with a novel cosine kernel. Aerospace Science and Technology, 155. https://doi.org/10.1016/j.ast.2024.109643

Shahvali, M., Azarbahram, A., & Pariz, N. (2023). Adaptive output consensus of nonlinear fractional-order multi-agent systems: a fractional-order backstepping approach. International Journal of General Systems, 52(2), 147–168. https://doi.org/10.1080/03081079.2022.2132488

Shao, X., & Ye, D. (2022). Neuroadaptive deferred full-state constraints control without feasibility conditions for uncertain nonlinear EASSs. Journal of the Franklin Institute, 359(7), 2810–2832. https://doi.org/10.1016/j.jfranklin.2022.03.004

Teixeira, A. R., Brito-Costa, S., & de Almeida, H. (2024). Optimizing Reading Experience: An Eye Tracking Comparative Analysis of Single-Column, Two-Column, and Three-Column Formats. In M. H. & A. Y. (Eds.), Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics): Vol. 14689 LNCS (pp. 51–59). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/978-3-031-60107-1_5

Weber, R., Dash, A., & Wriessnegger, S. C. (2024). Design of a Virtual Reality-Based Neuroadaptive System for Treatment of Arachnophobia. 2024 IEEE International Conference on Metrology for EXtended Reality, Artificial Intelligence and Neural Engineering, MetroXRAINE 2024 - Proceedings, 255–259. https://doi.org/10.1109/MetroXRAINE62247.2024.10796452

Xiang, K., Ming, R., Chen, S., & Lewis, F. L. (2025). Neuroadaptive Control With Enhanced Stability and Reliability. IEEE Transactions on Neural Networks and Learning Systems. https://doi.org/10.1109/TNNLS.2025.3542551

Yang, D., Liu, W., & Guo, C. (2023). Command-filtered-based neuroadaptive control for multi-input multi-output saturated nonstrict-feedback nonlinear systems with prescribed tracking performance. International Journal of Adaptive Control and Signal Processing, 37(3), 617–643. https://doi.org/10.1002/acs.3539

Zhao, K., Chen, L., Meng, W., & Zhao, L. (2023). Unified Mapping Function-Based Neuroadaptive Control of Constrained Uncertain Robotic Systems. IEEE Transactions on Cybernetics, 53(6), 3665–3674. https://doi.org/10.1109/TCYB.2021.3135893

Authors

Alida Ntahonkiriye
alidantahonkiriye@gmail.com (Primary Contact)
Charles Ndikumana
Denise Mutoni
Ntahonkiriye, A., Ndikumana, C. ., & Mutoni, D. . (2025). Designing Inclusive Hybrid Learning Using Eye-Tracking and Adaptive UX: A Neuroadaptive Framework. Journal Emerging Technologies in Education, 3(3), 139–147. https://doi.org/10.70177/jete.v3i3.2233

Article Details

No Related Submission Found