Quantum Thermodynamics: The Second Law in the Quantum World

David Miller (1), Robert Harris (2), Yulia Ivanova (3)
(1) University of Texas, Austin, United States,
(2) Columbia University, United States,
(3) Belarusian State University, Belarus

Abstract

The second law of thermodynamics is one of the basic principles of physics that applies in the classical and quantum worlds. Although this principle is widely accepted, its application in quantum systems is still the subject of intense research. This research focuses on the application of the second law of thermodynamics in the quantum world, with an emphasis on the influence of quantum entanglement on entropy and energy changes in quantum systems. The purpose of this study is to explore how the second law of thermodynamics applies in quantum systems and how quantum entanglement affects the rate of entropic change. This study aims to identify the differences between quantum systems and classical systems in the context of thermodynamics. This study uses experimental and simulation methods on simple quantum systems, such as trapped ions, to measure changes in entropy as temperature increases. The data obtained were analyzed to identify the influence of quantum entanglement on the rate of entropy change and how this differs from classical systems. The results showed that quantum entanglement affected the rate of entropy increase, with quantum systems showing slower entropy changes compared to classical systems. This suggests that entropy in quantum systems is not only affected by temperature, but also by quantum interactions between particles. This study concludes that the second law of thermodynamics remains valid in the quantum world, but with significant modifications due to the influence of quantum entanglement. These findings pave the way for the development of more complex and applicable quantum thermodynamic models, which can be used in the design of future quantum technologies.

Full text article

Generated from XML file

References

Althobaiti, O. S., & Dohler, M. (2020). Cybersecurity Challenges Associated With the Internet of Things in a Post-Quantum World. IEEE Access, 8, 157356–157381. https://doi.org/10.1109/ACCESS.2020.3019345

Avis, G., Ferreira Da Silva, F., Coopmans, T., Dahlberg, A., Jirovská, H., Maier, D., Rabbie, J., Torres-Knoop, A., & Wehner, S. (2023). Requirements for a processing-node quantum repeater on a real-world fiber grid. Npj Quantum Information, 9(1), 100. https://doi.org/10.1038/s41534-023-00765-x

Banerjee, N., & Saha, M. (2023). Revisiting leading quantum corrections to near extremal black hole thermodynamics. Journal of High Energy Physics, 2023(7), 10. https://doi.org/10.1007/JHEP07(2023)010

Brito, S., Canabarro, A., Cavalcanti, D., & Chaves, R. (2021). Satellite-Based Photonic Quantum Networks Are Small-World. PRX Quantum, 2(1), 010304. https://doi.org/10.1103/PRXQuantum.2.010304

Calvin, J. J., O’Brien, E. A., Sedlak, A. B., Balan, A. D., & Alivisatos, A. P. (2021). Thermodynamics of Composition Dependent Ligand Exchange on the Surfaces of Colloidal Indium Phosphide Quantum Dots. ACS Nano, 15(1), 1407–1420. https://doi.org/10.1021/acsnano.0c08683

Clivati, C., Meda, A., Donadello, S., Virzì, S., Genovese, M., Levi, F., Mura, A., Pittaluga, M., Yuan, Z., Shields, A. J., Lucamarini, M., Degiovanni, I. P., & Calonico, D. (2022). Coherent phase transfer for real-world twin-field quantum key distribution. Nature Communications, 13(1), 157. https://doi.org/10.1038/s41467-021-27808-1

Drezet, A. (2023). An Elementary Proof That Everett’s Quantum Multiverse Is Nonlocal: Bell-Locality and Branch-Symmetry in the Many-Worlds Interpretation. Symmetry, 15(6), 1250. https://doi.org/10.3390/sym15061250

Elouard, C., & Lombard Latune, C. (2023). Extending the Laws of Thermodynamics for Arbitrary Autonomous Quantum Systems. PRX Quantum, 4(2), 020309. https://doi.org/10.1103/PRXQuantum.4.020309

Guo, J., Sun, G., Zhao, B., Wang, L., Hong, W., Sidorov, V. A., Ma, N., Wu, Q., Li, S., Meng, Z. Y., Sandvik, A. W., & Sun, L. (2020). Quantum Phases of SrCu 2 ( BO 3 ) 2 from High-Pressure Thermodynamics. Physical Review Letters, 124(20), 206602. https://doi.org/10.1103/PhysRevLett.124.206602

Hamil, B., & Lütfüo?lu, B. C. (2023). Thermodynamics and Shadows of quantum-corrected Reissner–Nordström black hole surrounded by quintessence. Physics of the Dark Universe, 42, 101293. https://doi.org/10.1016/j.dark.2023.101293

Hong, P.-Y., Lin, C.-H., Wang, I.-H., Chiu, Y.-J., Lee, B.-J., Kao, J.-C., Huang, C.-H., Lin, H.-C., George, T., & Li, P.-W. (2023). The amazing world of self-organized Ge quantum dots for Si photonics on SiN platforms. Applied Physics A, 129(2), 126. https://doi.org/10.1007/s00339-022-06332-z

Krunic, Z., Flother, F., Seegan, G., Earnest-Noble, N., & Omar, S. (2022). Quantum Kernels for Real-World Predictions Based on Electronic Health Records. IEEE Transactions on Quantum Engineering, 3, 1–11. https://doi.org/10.1109/TQE.2022.3176806

Kurt, A., Rossi, M. A. C., & Piilo, J. (2023). Quantum transport efficiency in noisy random-removal and small-world networks. Journal of Physics A: Mathematical and Theoretical, 56(14), 145301. https://doi.org/10.1088/1751-8121/acc0ec

Lacerda, A. M., Purkayastha, A., Kewming, M., Landi, G. T., & Goold, J. (2023). Quantum thermodynamics with fast driving and strong coupling via the mesoscopic leads approach. Physical Review B, 107(19), 195117. https://doi.org/10.1103/PhysRevB.107.195117

Liu, M., Chen, Z.-Y., He, X.-H., Liu, X.-Y., Hu, H.-L., Tian, H., Liu, Y., & Jiang, F.-L. (2023). Thermodynamics of Ligand Exchange with Aromatic Ligands on the Surface of CdSe Quantum Dots. Chemistry of Materials, 35(5), 1868–1876. https://doi.org/10.1021/acs.chemmater.2c02651

Lostaglio, M. (2020). Certifying Quantum Signatures in Thermodynamics and Metrology via Contextuality of Quantum Linear Response. Physical Review Letters, 125(23), 230603. https://doi.org/10.1103/PhysRevLett.125.230603

Majidy, S., Braasch, W. F., Lasek, A., Upadhyaya, T., Kalev, A., & Yunger Halpern, N. (2023). Noncommuting conserved charges in quantum thermodynamics and beyond. Nature Reviews Physics, 5(11), 689–698. https://doi.org/10.1038/s42254-023-00641-9

Mitchell, C. J. (2020). The impact of quantum computing on real-world security: A 5G case study. Computers & Security, 93, 101825. https://doi.org/10.1016/j.cose.2020.101825

Nam, C. H. (2023). Implications of quantum gravity for dark matter in the brane-world scenario. Physics Letters B, 841, 137930. https://doi.org/10.1016/j.physletb.2023.137930

Nath, R. K., Thapliyal, H., & Humble, T. S. (2021). A Review of Machine Learning Classification Using Quantum Annealing for Real-World Applications. SN Computer Science, 2(5), 365. https://doi.org/10.1007/s42979-021-00751-0

Otgonbaatar, S., Schwarz, G., Datcu, M., & Kranzlmüller, D. (2023). Quantum Transfer Learning for Real-World, Small, and High-Dimensional Remotely Sensed Datasets. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 16, 9223–9230. https://doi.org/10.1109/JSTARS.2023.3316306

Poon, W. C. K., & McLeish, T. C. B. (2023). IS THERE A DISTINCTIVE QUANTUM THEOLOGY?: With Mark Harris, “Quantum Theology beyond Copenhagen: Taking Fundamentalism Literally”; Shaun C. Henson, “What Makes a Quantum Physics Belief Believable? Many?Worlds among Six Impossible Things before Breakfast”; Emily Qureshi?Hurst, “The Many Worries of Many Worlds”; Elise Crull, “Interpretation Neutrality for Quantum Theology”; Wilson C. K. Poon and Tom C. B. McLeish, “Is There a Distinctive Quantum Theology?”; and Ernest L. Simmons, “The Entangled Trinity, Quantum Biology, and Deep Incarnation.” Zygon®, 58(1), 265–284. https://doi.org/10.1111/zygo.12867

Rivas, Á. (2020). Strong Coupling Thermodynamics of Open Quantum Systems. Physical Review Letters, 124(16), 160601. https://doi.org/10.1103/PhysRevLett.124.160601

Serrano, M. A., Sánchez, L. E., Santos-Olmo, A., García-Rosado, D., Blanco, C., Barletta, V. S., Caivano, D., & Fernández-Medina, E. (2024). Minimizing incident response time in real-world scenarios using quantum computing. Software Quality Journal, 32(1), 163–192. https://doi.org/10.1007/s11219-023-09632-6

Seyhan, K., Nguyen, T. N., Akleylek, S., & Cengiz, K. (2022). Lattice-based cryptosystems for the security of resource-constrained IoT devices in post-quantum world: A survey. Cluster Computing, 25(3), 1729–1748. https://doi.org/10.1007/s10586-021-03380-7

Shiraishi, N., & Sagawa, T. (2021). Quantum Thermodynamics of Correlated-Catalytic State Conversion at Small Scale. Physical Review Letters, 126(15), 150502. https://doi.org/10.1103/PhysRevLett.126.150502

Simion, E. (2020). Entropy and Randomness: From Analogic to Quantum World. IEEE Access, 8, 74553–74561. https://doi.org/10.1109/ACCESS.2020.2988658

Somhorst, F. H. B., Van Der Meer, R., Correa Anguita, M., Schadow, R., Snijders, H. J., De Goede, M., Kassenberg, B., Venderbosch, P., Taballione, C., Epping, J. P., Van Den Vlekkert, H. H., Timmerhuis, J., Bulmer, J. F. F., Lugani, J., Walmsley, I. A., Pinkse, P. W. H., Eisert, J., Walk, N., & Renema, J. J. (2023). Quantum simulation of thermodynamics in an integrated quantum photonic processor. Nature Communications, 14(1), 3895. https://doi.org/10.1038/s41467-023-38413-9

Stollenwerk, T., Hadfield, S., & Wang, Z. (2020). Toward Quantum Gate-Model Heuristics for Real-World Planning Problems. IEEE Transactions on Quantum Engineering, 1, 1–16. https://doi.org/10.1109/TQE.2020.3030609

Strasberg, P., & Winter, A. (2021). First and Second Law of Quantum Thermodynamics: A Consistent Derivation Based on a Microscopic Definition of Entropy. PRX Quantum, 2(3), 030202. https://doi.org/10.1103/PRXQuantum.2.030202

Takaya, D., Watanabe, C., Nagase, S., Kamisaka, K., Okiyama, Y., Moriwaki, H., Yuki, H., Sato, T., Kurita, N., Yagi, Y., Takagi, T., Kawashita, N., Takaba, K., Ozawa, T., Takimoto-Kamimura, M., Tanaka, S., Fukuzawa, K., & Honma, T. (2021). FMODB: The World’s First Database of Quantum Mechanical Calculations for Biomacromolecules Based on the Fragment Molecular Orbital Method. Journal of Chemical Information and Modeling, 61(2), 777–794. https://doi.org/10.1021/acs.jcim.0c01062

Talkner, P., & Hänggi, P. (2020). Colloquium: Statistical mechanics and thermodynamics at strong coupling: Quantum and classical. Reviews of Modern Physics, 92(4), 041002. https://doi.org/10.1103/RevModPhys.92.041002

Thompson, R. J., Aveline, D., Chiow, S. W., Elliott, E. R., Kellogg, J. R., Kohel, J. M., Sbroscia, M. S., Phillips, L., Schneider, C., Williams, J. R., Bigelow, N., Engels, P., Lundblad, N., Sackett, C. A., & Woerner, L. (2023). Exploring the quantum world with a third generation ultra-cold atom facility. Quantum Science and Technology, 8(1), 014007. https://doi.org/10.1088/2058-9565/aca34f

V. Romero, S., Osaba, E., Villar-Rodriguez, E., Oregi, I., & Ban, Y. (2023). Hybrid approach for solving real-world bin packing problem instances using quantum annealers. Scientific Reports, 13(1), 11777. https://doi.org/10.1038/s41598-023-39013-9

Van Vu, T., & Saito, K. (2022). Thermodynamics of Precision in Markovian Open Quantum Dynamics. Physical Review Letters, 128(14), 140602. https://doi.org/10.1103/PhysRevLett.128.140602

Authors

David Miller
davidmiller@gmail.com (Primary Contact)
Robert Harris
Yulia Ivanova
Miller, D., Harris, R., & Ivanova, Y. (2025). Quantum Thermodynamics: The Second Law in the Quantum World. Journal of Tecnologia Quantica, 2(2), 86–95. https://doi.org/10.70177/quantica.v2i2.1962

Article Details