Topological Quantum Computing: Challenges and Potential

Loso Judijanto (1), Safiullah Aziz (2), Omar Khan (3)
(1) IPOSS Jakarta, Indonesia,
(2) Herat University, Afghanistan,
(3) Kabul University, Afghanistan

Abstract

Quantum computing offers great potential for a technological revolution, but challenges related to the stability and resilience of computing systems remain a major obstacle. Topological Quantum Computing (TQC) emerged as one of the solutions to overcome this problem. This study aims to analyze the challenges and potential of TQC in the development of quantum computing that is more stable and resistant to external disturbances. The method used in this study is a literature study by analyzing secondary data from various experiments conducted by leading research institutions. The results show that TQC has the potential to improve the reliability of quantum computing, especially in reducing the error rate that often occurs in conventional quantum systems. Nonetheless, the main challenges faced are the greater scalability and integration issues of the system. The study concludes that despite the promise of TQC, the development of this technology still requires further research to overcome existing technical constraints. The future research direction needs to be focused on the development of topological qubits on a large scale and more efficient integration for practical applications.


 


 

Full text article

Generated from XML file

References

Ajagekar, A., Humble, T., & You, F. (2020). Quantum computing based hybrid solution strategies for large-scale discrete-continuous optimization problems. Computers & Chemical Engineering, 132, 106630. https://doi.org/10.1016/j.compchemeng.2019.106630

Ajagekar, A., & You, F. (2019). Quantum computing for energy systems optimization: Challenges and opportunities. Energy, 179, 76–89. https://doi.org/10.1016/j.energy.2019.04.186

Awan, U., Hannola, L., Tandon, A., Goyal, R. K., & Dhir, A. (2022). Quantum computing challenges in the software industry. A fuzzy AHP-based approach. Information and Software Technology, 147, 106896. https://doi.org/10.1016/j.infsof.2022.106896

Bardin, J. C., Slichter, D. H., & Reilly, D. J. (2021). Microwaves in Quantum Computing. IEEE Journal of Microwaves, 1(1), 403–427. https://doi.org/10.1109/JMW.2020.3034071

Bonen, S., Alakusu, U., Duan, Y., Gong, M. J., Dadash, M. S., Lucci, L., Daughton, D. R., Adam, G. C., Iordanescu, S., Pasteanu, M., Giangu, I., Jia, H., Gutierrez, L. E., Chen, W. T., Messaoudi, N., Harame, D., Muller, A., Mansour, R. R., Asbeck, P., & Voinigescu, S. P. (2018). Cryogenic Characterization of 22nm FDSOI CMOS Technology for Quantum Computing ICs. IEEE Electron Device Letters, 1–1. https://doi.org/10.1109/LED.2018.2880303

Bravyi, S., Dial, O., Gambetta, J. M., Gil, D., & Nazario, Z. (2022). The future of quantum computing with superconducting qubits. Journal of Applied Physics, 132(16), 160902. https://doi.org/10.1063/5.0082975

Bruzewicz, C. D., Chiaverini, J., McConnell, R., & Sage, J. M. (2019). Trapped-ion quantum computing: Progress and challenges. Applied Physics Reviews, 6(2), 021314. https://doi.org/10.1063/1.5088164

Cacciapuoti, A. S., Caleffi, M., Tafuri, F., Cataliotti, F. S., Gherardini, S., & Bianchi, G. (2020). Quantum Internet: Networking Challenges in Distributed Quantum Computing. IEEE Network, 34(1), 137–143. https://doi.org/10.1109/MNET.001.1900092

Corcoles, A. D., Kandala, A., Javadi-Abhari, A., McClure, D. T., Cross, A. W., Temme, K., Nation, P. D., Steffen, M., & Gambetta, J. M. (2020). Challenges and Opportunities of Near-Term Quantum Computing Systems. Proceedings of the IEEE, 108(8), 1338–1352. https://doi.org/10.1109/JPROC.2019.2954005

Cuomo, D., Caleffi, M., & Cacciapuoti, A. S. (2020). Towards a distributed quantum computing ecosystem. IET Quantum Communication, 1(1), 3–8. https://doi.org/10.1049/iet-qtc.2020.0002

Fernandez-Carames, T. M., & Fraga-Lamas, P. (2020). Towards Post-Quantum Blockchain: A Review on Blockchain Cryptography Resistant to Quantum Computing Attacks. IEEE Access, 8, 21091–21116. https://doi.org/10.1109/ACCESS.2020.2968985

Ghosh, S., & Liew, T. C. H. (2020). Quantum computing with exciton-polariton condensates. Npj Quantum Information, 6(1), 16. https://doi.org/10.1038/s41534-020-0244-x

Gill, S. S., Kumar, A., Singh, H., Singh, M., Kaur, K., Usman, M., & Buyya, R. (2022). Quantum computing: A taxonomy, systematic review and future directions. Software: Practice and Experience, 52(1), 66–114. https://doi.org/10.1002/spe.3039

Grimsmo, A. L., Combes, J., & Baragiola, B. Q. (2020). Quantum Computing with Rotation-Symmetric Bosonic Codes. Physical Review X, 10(1), 011058. https://doi.org/10.1103/PhysRevX.10.011058

Henriet, L., Beguin, L., Signoles, A., Lahaye, T., Browaeys, A., Reymond, G.-O., & Jurczak, C. (2020). Quantum computing with neutral atoms. Quantum, 4, 327. https://doi.org/10.22331/q-2020-09-21-327

Hoo Teo, K., Zhang, Y., Chowdhury, N., Rakheja, S., Ma, R., Xie, Q., Yagyu, E., Yamanaka, K., Li, K., & Palacios, T. (2021). Emerging GaN technologies for power, RF, digital, and quantum computing applications: Recent advances and prospects. Journal of Applied Physics, 130(16), 160902. https://doi.org/10.1063/5.0061555

Hu, Z., Xia, R., & Kais, S. (2020). A quantum algorithm for evolving open quantum dynamics on quantum computing devices. Scientific Reports, 10(1), 3301. https://doi.org/10.1038/s41598-020-60321-x

Jurcevic, P., Javadi-Abhari, A., Bishop, L. S., Lauer, I., Bogorin, D. F., Brink, M., Capelluto, L., Günlük, O., Itoko, T., Kanazawa, N., Kandala, A., Keefe, G. A., Krsulich, K., Landers, W., Lewandowski, E. P., McClure, D. T., Nannicini, G., Narasgond, A., Nayfeh, H. M., … Gambetta, J. M. (2021). Demonstration of quantum volume 64 on a superconducting quantum computing system. Quantum Science and Technology, 6(2), 025020. https://doi.org/10.1088/2058-9565/abe519

Killoran, N., Izaac, J., Quesada, N., Bergholm, V., Amy, M., & Weedbrook, C. (2019). Strawberry Fields: A Software Platform for Photonic Quantum Computing. Quantum, 3, 129. https://doi.org/10.22331/q-2019-03-11-129

Klco, N., & Savage, M. J. (2019). Digitization of scalar fields for quantum computing. Physical Review A, 99(5), 052335. https://doi.org/10.1103/PhysRevA.99.052335

Larsen, M. V., Guo, X., Breum, C. R., Neergaard-Nielsen, J. S., & Andersen, U. L. (2021). Deterministic multi-mode gates on a scalable photonic quantum computing platform. Nature Physics, 17(9), 1018–1023. https://doi.org/10.1038/s41567-021-01296-y

Litinski, D. (2019). A Game of Surface Codes: Large-Scale Quantum Computing with Lattice Surgery. Quantum, 3, 128. https://doi.org/10.22331/q-2019-03-05-128

Low, P. J., White, B. M., Cox, A. A., Day, M. L., & Senko, C. (2020). Practical trapped-ion protocols for universal qudit-based quantum computing. Physical Review Research, 2(3), 033128. https://doi.org/10.1103/PhysRevResearch.2.033128

Nakajima, K., Fujii, K., Negoro, M., Mitarai, K., & Kitagawa, M. (2019). Boosting Computational Power through Spatial Multiplexing in Quantum Reservoir Computing. Physical Review Applied, 11(3), 034021. https://doi.org/10.1103/PhysRevApplied.11.034021

Ollitrault, P. J., Kandala, A., Chen, C.-F., Barkoutsos, P. Kl., Mezzacapo, A., Pistoia, M., Sheldon, S., Woerner, S., Gambetta, J. M., & Tavernelli, I. (2020). Quantum equation of motion for computing molecular excitation energies on a noisy quantum processor. Physical Review Research, 2(4), 043140. https://doi.org/10.1103/PhysRevResearch.2.043140

Pogorelov, I., Feldker, T., Marciniak, Ch. D., Postler, L., Jacob, G., Krieglsteiner, O., Podlesnic, V., Meth, M., Negnevitsky, V., Stadler, M., Höfer, B., Wächter, C., Lakhmanskiy, K., Blatt, R., Schindler, P., & Monz, T. (2021). Compact Ion-Trap Quantum Computing Demonstrator. PRX Quantum, 2(2), 020343. https://doi.org/10.1103/PRXQuantum.2.020343

Quantum Technology and Application Consortium – QUTAC, Bayerstadler, A., Becquin, G., Binder, J., Botter, T., Ehm, H., Ehmer, T., Erdmann, M., Gaus, N., Harbach, P., Hess, M., Klepsch, J., Leib, M., Luber, S., Luckow, A., Mansky, M., Mauerer, W., Neukart, F., Niedermeier, C., … Winter, F. (2021). Industry quantum computing applications. EPJ Quantum Technology, 8(1), 25. https://doi.org/10.1140/epjqt/s40507-021-00114-x

Romero, J., Babbush, R., McClean, J. R., Hempel, C., Love, P. J., & Aspuru-Guzik, A. (2018). Strategies for quantum computing molecular energies using the unitary coupled cluster ansatz. Quantum Science and Technology, 4(1), 014008. https://doi.org/10.1088/2058-9565/aad3e4

Smart, S. E., & Mazziotti, D. A. (2021). Quantum Solver of Contracted Eigenvalue Equations for Scalable Molecular Simulations on Quantum Computing Devices. Physical Review Letters, 126(7), 070504. https://doi.org/10.1103/PhysRevLett.126.070504

Suba??, Y., Somma, R. D., & Orsucci, D. (2019). Quantum Algorithms for Systems of Linear Equations Inspired by Adiabatic Quantum Computing. Physical Review Letters, 122(6), 060504. https://doi.org/10.1103/PhysRevLett.122.060504

Takeda, S., & Furusawa, A. (2019). Toward large-scale fault-tolerant universal photonic quantum computing. APL Photonics, 4(6), 060902. https://doi.org/10.1063/1.5100160

Vandersypen, L. M. K., & Eriksson, M. A. (2019). Quantum computing with semiconductor spins. Physics Today, 72(8), 38–45. https://doi.org/10.1063/PT.3.4270

Von Burg, V., Low, G. H., Häner, T., Steiger, D. S., Reiher, M., Roetteler, M., & Troyer, M. (2021). Quantum computing enhanced computational catalysis. Physical Review Research, 3(3), 033055. https://doi.org/10.1103/PhysRevResearch.3.033055

Wu, Y., Kolkowitz, S., Puri, S., & Thompson, J. D. (2022). Erasure conversion for fault-tolerant quantum computing in alkaline earth Rydberg atom arrays. Nature Communications, 13(1), 4657. https://doi.org/10.1038/s41467-022-32094-6

Yu, P., Cheuk, L. W., Kozyryev, I., & Doyle, J. M. (2019). A scalable quantum computing platform using symmetric-top molecules. New Journal of Physics, 21(9), 093049. https://doi.org/10.1088/1367-2630/ab428d

Authors

Loso Judijanto
losojudijantobumn@gmail.com (Primary Contact)
Safiullah Aziz
Omar Khan
Judijanto, L., Aziz, S., & Khan, O. (2025). Topological Quantum Computing: Challenges and Potential. Journal of Tecnologia Quantica, 2(1), 44–54. https://doi.org/10.70177/quantica.v2i1.1960

Article Details

Similar Articles

You may also start an advanced similarity search for this article.