Abstract
Quantum field theory and general relativity are the two main pillars of modern physics. However, the two still cannot be combined consistently to explain cosmic phenomena at the microscopic level, especially in the context of curved spacetime. This research aims to explore the interaction between quantum fields and the curvature of spacetime, with a focus on the implications of quantum gravity. This research aims to understand how quantum fields interact with curved spacetime, as well as to develop a more comprehensive model of physics that combines these two concepts. The methods used include the development of mathematical models and numerical simulations to integrate quantum field theory with general relativity. The analysis was carried out by examining the impact of space-time curvature on quantum field fluctuations around massive objects such as black holes. The findings show that the curvature of spacetime has a major influence on the behavior of the quantum field, leading to modifications in energy distribution and field fluctuations. This discovery opens up new possibilities in the development of a more complete theory of quantum gravity. This study provides new insights into understanding the relationship between quantum fields and curved spacetime, as well as opening the way for further research in the field of quantum gravity and extreme cosmic phenomena.
Full text article
References
Adhikari, K., Choudhury, S., & Roy, A. (2023). Krylov Complexity in Quantum Field Theory. Nuclear Physics B, 993, 116263. https://doi.org/10.1016/j.nuclphysb.2023.116263
Bidussi, L., Hartong, J., Have, E., Musaeus, J., & Prohazka, S. (2022). Fractons, dipole symmetries and curved spacetime. SciPost Physics, 12(6), 205. https://doi.org/10.21468/SciPostPhys.12.6.205
Blasone, M., Lambiase, G., Luciano, G. G., Petruzziello, L., & Smaldone, L. (2020). Time-energy uncertainty relation for neutrino oscillations in curved spacetime. Classical and Quantum Gravity, 37(15), 155004. https://doi.org/10.1088/1361-6382/ab995c
Capolupo, A., Lambiase, G., & Quaranta, A. (2020). Neutrinos in curved spacetime: Particle mixing and flavor oscillations. Physical Review D, 101(9), 095022. https://doi.org/10.1103/PhysRevD.101.095022
Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., Zhou, F., Jiang, H.-F., Chen, T.-Y., Li, H., You, L.-X., Wang, Z., Wang, X.-B., Zhang, Q., & Pan, J.-W. (2021). Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nature Photonics, 15(8), 570–575. https://doi.org/10.1038/s41566-021-00828-5
Chen, S., & Tanizaki, Y. (2023). Solitonic Symmetry beyond Homotopy: Invertibility from Bordism and Noninvertibility from Topological Quantum Field Theory. Physical Review Letters, 131(1), 011602. https://doi.org/10.1103/PhysRevLett.131.011602
Cheng, P., & Mao, P. (2023). Soft gluon theorems in curved spacetime. Physical Review D, 107(6), 065010. https://doi.org/10.1103/PhysRevD.107.065010
Cintas-Canto, A., Kermani, M. M., & Azarderakhsh, R. (2023). Reliable Architectures for Finite Field Multipliers Using Cyclic Codes on FPGA Utilized in Classic and Post-Quantum Cryptography. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 31(1), 157–161. https://doi.org/10.1109/TVLSI.2022.3224357
Gottscholl, A., Diez, M., Soltamov, V., Kasper, C., Krauße, D., Sperlich, A., Kianinia, M., Bradac, C., Aharonovich, I., & Dyakonov, V. (2021). Spin defects in hBN as promising temperature, pressure and magnetic field quantum sensors. Nature Communications, 12(1), 4480. https://doi.org/10.1038/s41467-021-24725-1
Harlow, D., & Ooguri, H. (2021). Symmetries in Quantum Field Theory and Quantum Gravity. Communications in Mathematical Physics, 383(3), 1669–1804. https://doi.org/10.1007/s00220-021-04040-y
Hwang, J., & Noh, H. (2023). Definition of electric and magnetic fields in curved spacetime. Annals of Physics, 454, 169332. https://doi.org/10.1016/j.aop.2023.169332
Jakobsen, G. U., Mogull, G., Plefka, J., & Steinhoff, J. (2021). Classical Gravitational Bremsstrahlung from a Worldline Quantum Field Theory. Physical Review Letters, 126(20), 201103. https://doi.org/10.1103/PhysRevLett.126.201103
Kaubruegger, R., Shankar, A., Vasilyev, D. V., & Zoller, P. (2023). Optimal and Variational Multiparameter Quantum Metrology and Vector-Field Sensing. PRX Quantum, 4(2), 020333. https://doi.org/10.1103/PRXQuantum.4.020333
Klco, N., Savage, M. J., & Stryker, J. R. (2020). SU(2) non-Abelian gauge field theory in one dimension on digital quantum computers. Physical Review D, 101(7), 074512. https://doi.org/10.1103/PhysRevD.101.074512
Kontou, E.-A., & Sanders, K. (2020). Energy conditions in general relativity and quantum field theory. Classical and Quantum Gravity, 37(19), 193001. https://doi.org/10.1088/1361-6382/ab8fcf
Li, W., Zhang, L., Lu, Y., Li, Z.-P., Jiang, C., Liu, Y., Huang, J., Li, H., Wang, Z., Wang, X.-B., Zhang, Q., You, L., Xu, F., & Pan, J.-W. (2023). Twin-Field Quantum Key Distribution without Phase Locking. Physical Review Letters, 130(25), 250802. https://doi.org/10.1103/PhysRevLett.130.250802
Ling, R., Guo, H., Liu, H., Kuang, X.-M., & Wang, B. (2021). Shadow and near-horizon characteristics of the acoustic charged black hole in curved spacetime. Physical Review D, 104(10), 104003. https://doi.org/10.1103/PhysRevD.104.104003
Liu, Y., Zhang, W.-J., Jiang, C., Chen, J.-P., Zhang, C., Pan, W.-X., Ma, D., Dong, H., Xiong, J.-M., Zhang, C.-J., Li, H., Wang, R.-C., Wu, J., Chen, T.-Y., You, L., Wang, X.-B., Zhang, Q., & Pan, J.-W. (2023). Experimental Twin-Field Quantum Key Distribution over 1000 km Fiber Distance. Physical Review Letters, 130(21), 210801. https://doi.org/10.1103/PhysRevLett.130.210801
Maniccia, G., Montani, G., & Antonini, S. (2023). QFT in curved spacetime from quantum gravity: Proper WKB decomposition of the gravitational component. Physical Review D, 107(6), L061901. https://doi.org/10.1103/PhysRevD.107.L061901
Mogull, G., Plefka, J., & Steinhoff, J. (2021). Classical black hole scattering from a worldline quantum field theory. Journal of High Energy Physics, 2021(2), 48. https://doi.org/10.1007/JHEP02(2021)048
Moreno-Pulido, C., & Solà Peracaula, J. (2020). Running vacuum in quantum field theory in curved spacetime: Renormalizing $$rho _{vac}$$ without $$sim m^4$$ terms. The European Physical Journal C, 80(8), 692. https://doi.org/10.1140/epjc/s10052-020-8238-6
Oancea, M. A., & Kumar, A. (2023). Semiclassical analysis of Dirac fields on curved spacetime. Physical Review D, 107(4), 044029. https://doi.org/10.1103/PhysRevD.107.044029
Ra, Y.-S., Dufour, A., Walschaers, M., Jacquard, C., Michel, T., Fabre, C., & Treps, N. (2020). Non-Gaussian quantum states of a multimode light field. Nature Physics, 16(2), 144–147. https://doi.org/10.1038/s41567-019-0726-y
Shi, Y.-H., Yang, R.-Q., Xiang, Z., Ge, Z.-Y., Li, H., Wang, Y.-Y., Huang, K., Tian, Y., Song, X., Zheng, D., Xu, K., Cai, R.-G., & Fan, H. (2023). Quantum simulation of Hawking radiation and curved spacetime with a superconducting on-chip black hole. Nature Communications, 14(1), 3263. https://doi.org/10.1038/s41467-023-39064-6
Strohmaier, A., & Witten, E. (2024). The Timelike Tube Theorem in Curved Spacetime. Communications in Mathematical Physics, 405(7), 153. https://doi.org/10.1007/s00220-024-05009-3
Švan?ara, P., Smaniotto, P., Solidoro, L., MacDonald, J. F., Patrick, S., Gregory, R., Barenghi, C. F., & Weinfurtner, S. (2024). Rotating curved spacetime signatures from a giant quantum vortex. Nature, 628(8006), 66–70. https://doi.org/10.1038/s41586-024-07176-8
Tawfik, A. N., & Dabash, T. F. (2023). Born reciprocity and relativistic generalized uncertainty principle in Finsler structure: Fundamental tensor in discretized curved spacetime. International Journal of Modern Physics D, 32(09), 2350060. https://doi.org/10.1142/S0218271823500608
Toscano-Negrette, R. G., León-González, J. C., Vinasco, J. A., Morales, A. L., Koc, F., Kavruk, A. E., Sahin, M., Mora-Ramos, M. E., Sierra-Ortega, J., Martínez-Orozco, J. C., Restrepo, R. L., & Duque, C. A. (2023). Optical Properties in a ZnS/CdS/ZnS Core/Shell/Shell Spherical Quantum Dot: Electric and Magnetic Field and Donor Impurity Effects. Nanomaterials, 13(3), 550. https://doi.org/10.3390/nano13030550
Viermann, C., Sparn, M., Liebster, N., Hans, M., Kath, E., Parra-López, Á., Tolosa-Simeón, M., Sánchez-Kuntz, N., Haas, T., Strobel, H., Floerchinger, S., & Oberthaler, M. K. (2022). Quantum field simulator for dynamics in curved spacetime. Nature, 611(7935), 260–264. https://doi.org/10.1038/s41586-022-05313-9
Wang, G., Madonini, F., Li, B., Li, C., Xiang, J., Villa, F., & Cappellaro, P. (2023). Fast Wide?Field Quantum Sensor Based on Solid?State Spins Integrated with a SPAD Array. Advanced Quantum Technologies, 6(9), 2300046. https://doi.org/10.1002/qute.202300046
Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., Zhu, Y.-G., Morozov, P. V., Divochiy, A. V., Zhou, Z., Guo, G.-C., & Han, Z.-F. (2022). Twin-field quantum key distribution over 830-km fibre. Nature Photonics, 16(2), 154–161. https://doi.org/10.1038/s41566-021-00928-2
Wang, Z., Wang, D., Deng, F., Liu, X., Li, X., Luo, X., Peng, Y., Zhang, J., Zou, J., Ding, L., & Zhang, L. (2023). Ag quantum dots decorated ultrathin g-C3N4 nanosheets for boosting degradation of pharmaceutical contaminants: Insight from interfacial electric field induced by local surface plasma resonance. Chemical Engineering Journal, 463, 142313. https://doi.org/10.1016/j.cej.2023.142313
Wu, S.-M., & Zeng, H.-S. (2022). Genuine tripartite nonlocality and entanglement in curved spacetime. The European Physical Journal C, 82(1), 4. https://doi.org/10.1140/epjc/s10052-021-09954-4
Zhou, L., Lin, J., Jing, Y., & Yuan, Z. (2023). Twin-field quantum key distribution without optical frequency dissemination. Nature Communications, 14(1), 928. https://doi.org/10.1038/s41467-023-36573-2
Authors
Copyright (c) 2025 Loso Judijanto, Bassam Al-Khouri, Rania Khatib

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.