Quantum Information Theory for Network Quantum Communication

Loso Judijanto (1)
(1) IPOSS Jakarta, Indonesia

Abstract

The background of this research focuses on the importance of quantum communication in overcoming the challenges of global communication security and efficiency. Using quantum information theory, this study aims to explore the potential of network quantum communication in presenting safer and more efficient solutions. The research methods used combine hands-on experiments and analysis of quantum theory to understand how quantum communication systems can be applied in the real world. The results show that although there are still technical challenges, especially in qubit management and error correction, significant progress has been made in experiments that integrate quantum communication with satellites and optical fibers. These results open up great opportunities for the development of quantum communication technology in practical applications, especially for cryptography and secure transmission of information. The conclusion of this study highlights that despite the many challenges to be faced, this research makes an important contribution in understanding ways to develop and implement stable and efficient network quantum communication. Further research is needed to overcome technical limitations and accelerate the development of this technology on a global scale.

Full text article

Generated from XML file

References

Barakat, J. M. H., Karar, A. S., Ghandour, R., & Gürkan, Z. N. (2025). Advances in optical bistability: Theory, devices, and emerging applications. Results in Engineering, 26. Scopus. https://doi.org/10.1016/j.rineng.2025.105540

Beer, K., Bondarenko, D., Farrelly, T., Osborne, T. J., Salzmann, R., Scheiermann, D., & Wolf, R. (2020). Training deep quantum neural networks. Nature Communications, 11(1), 808. https://doi.org/10.1038/s41467-020-14454-2

Brahma, B., Manchala, Y., Duvvi, S., Sahoo, S. K., Panigrahi, B. S., & Patra, S. (2025). EXPLORING QUANTUM ALGORITHMS AND THEIR IMPACT ON CRYPTOGRAPHY AND INFORMATION SECURITY IN THE AGE OF QUANTUM SUPREMACY. Journal of Environmental Protection and Ecology, 26(2), 784–795. Scopus.

Chehade, S., Dawson, J. A., Prowell, S., & Passian, A. (2025). Entropy of the Quantum–Classical Interface: A Potential Metric for Security. Entropy, 27(5). Scopus. https://doi.org/10.3390/e27050517

De Forges De Parny, L., Alibart, O., Debaud, J., Gressani, S., Lagarrigue, A., Martin, A., Metrat, A., Schiavon, M., Troisi, T., Diamanti, E., Gélard, P., Kerstel, E., Tanzilli, S., & Van Den Bossche, M. (2023). Satellite-based quantum information networks: Use cases, architecture, and roadmap. Communications Physics, 6(1), 12. https://doi.org/10.1038/s42005-022-01123-7

Erdman, P. A., Czupryniak, R., Bhandari, B., Jordan, A. N., Noé, F., Eisert, J., & Guarnieri, G. (2025). Artificially intelligent Maxwell’s demon for optimal control of open quantum systems. Quantum Science and Technology, 10(2). Scopus. https://doi.org/10.1088/2058-9565/adbccf

Guo, Y., Tang, H., Pauwels, J., Cruzeiro, E. Z., Hu, X.-M., Liu, B.-H., Huang, Y.-F., Li, C.-F., Guo, G.-C., & Tavakoli, A. (2025). Compression of Entanglement Improves Quantum Communication. Laser and Photonics Reviews, 19(10). Scopus. https://doi.org/10.1002/lpor.202401110

Hsieh, C.-Y. (2025). Dynamical Landauer Principle: Quantifying Information Transmission by Thermodynamics. Physical Review Letters, 134(5). Scopus. https://doi.org/10.1103/PhysRevLett.134.050404

Huang, H. (2025). Commercial password modification for face recognition systems using quantum key distribution networks. Journal of Combinatorial Mathematics and Combinatorial Computing, 127a, 9289–9300. Scopus. https://doi.org/10.61091/jcmcc127a-517

Ji, K., & Chitambar, E. (2025). Entropic and Operational Characterizations of Dynamic Quantum Resources. IEEE Transactions on Information Theory. Scopus. https://doi.org/10.1109/TIT.2025.3559765

Jing, M., Zhu, C., & Wang, X. (2025). Circuit knitting facing exponential sampling-overhead scaling bounded by entanglement cost. Physical Review A, 111(1). Scopus. https://doi.org/10.1103/PhysRevA.111.012433

Kumar, U., Deng, Z.-Y., Yadav, B. C., Lee, M. W., & Wu, C.-H. (2025). Advances in 0D quantum dots and hybrid nanoarchitectures for high-performance gas sensing devices. Nanotechnology, 36(18). Scopus. https://doi.org/10.1088/1361-6528/adc310

Kumar, V., Vasan, K., & Kumar, S. (2025). Exact mean and variance of the squared Hellinger distance for random density matrices. Physical Review E, 111(5). Scopus. https://doi.org/10.1103/PhysRevE.111.054204

Landsman, K. A., Figgatt, C., Schuster, T., Linke, N. M., Yoshida, B., Yao, N. Y., & Monroe, C. (2019). Verified quantum information scrambling. Nature, 567(7746), 61–65. https://doi.org/10.1038/s41586-019-0952-6

Larocca, M., Ju, N., García-Martín, D., Coles, P. J., & Cerezo, M. (2023). Theory of overparametrization in quantum neural networks. Nature Computational Science, 3(6), 542–551. https://doi.org/10.1038/s43588-023-00467-6

Liu, S., Li, X., Chen, Y., Jiang, Y., & Cong, G. (2025). Disentangling Dynamics: Advanced, Scalable and Explainable Imputation for Multivariate Time Series. IEEE Transactions on Knowledge and Data Engineering. Scopus. https://doi.org/10.1109/TKDE.2025.3558405

Natur, H., & Pereg, U. (2025). Empirical coordination of separable quantum correlations. AIMS Mathematics, 10(4), 10028–10061. Scopus. https://doi.org/10.3934/math.2025458

Pan, L., Skidmore, F. M., Güldal, S., & Tanik, M. M. (2025). A Communication Dynamics Representation of Electron Energy of S-Orbitals in Hydrogen-Like Atoms. Dalam Artificial Intelligence for Design and Process Science (hlm. 13–28). Springer Nature; Scopus. https://doi.org/10.1007/978-3-031-67886-8_2

Pompili, M., Hermans, S. L. N., Baier, S., Beukers, H. K. C., Humphreys, P. C., Schouten, R. N., Vermeulen, R. F. L., Tiggelman, M. J., Dos Santos Martins, L., Dirkse, B., Wehner, S., & Hanson, R. (2021). Realization of a multinode quantum network of remote solid-state qubits. Science, 372(6539), 259–264. https://doi.org/10.1126/science.abg1919

Qu, Z., Liu, X., & Zheng, M. (2023). Temporal-Spatial Quantum Graph Convolutional Neural Network Based on Schrödinger Approach for Traffic Congestion Prediction. IEEE Transactions on Intelligent Transportation Systems, 24(8), 8677–8686. https://doi.org/10.1109/TITS.2022.3203791

Ramya, R., Kumar, P., Dhanasekaran, D., Kumar, R. S., & Sharavan, S. A. (2025). A review of quantum communication and information networks with advanced cryptographic applications using machine learning, deep learning techniques. Franklin Open, 10. Scopus. https://doi.org/10.1016/j.fraope.2025.100223

Schütt, K. T., Gastegger, M., Tkatchenko, A., Müller, K.-R., & Maurer, R. J. (2019). Unifying machine learning and quantum chemistry with a deep neural network for molecular wavefunctions. Nature Communications, 10(1), 5024. https://doi.org/10.1038/s41467-019-12875-2

Shinde, U. U., & Singh, A. (2025). A review: On special type of quantum error correcting codes. Discrete Mathematics, Algorithms and Applications. Scopus. https://doi.org/10.1142/S1793830925500776

Shukla, A., Verma, T., Mishra, S., Rathore, R. S., & Alkhafaji, M. A. (2025). Emergence of Quantum-Enabled 6G Model for Computational Efficiency Retention. Dalam Swaroop A., Kansal V., Fortino G., & Hassanien A.E. (Ed.), Lect. Notes Networks Syst.: Vol. 1096 LNNS (hlm. 101–112). Springer Science and Business Media Deutschland GmbH; Scopus. https://doi.org/10.1007/978-981-97-7178-3_9

ur Rehman, J., Oleynik, L., Koudia, S., Bayraktar, M., & Chatzinotas, S. (2025). Diversity and multiplexing in quantum MIMO channels. EPJ Quantum Technology, 12(1). Scopus. https://doi.org/10.1140/epjqt/s40507-025-00324-7

Wan, Z., Li, Y., Gong, P., Wu, F., & Wen, K. (2025). Analysis of the influence of atmospheric aerosol on the attenuation of free space QKD channel. Dalam Ping C. (Ed.), Proc SPIE Int Soc Opt Eng (Vol. 13511). SPIE; Scopus. https://doi.org/10.1117/12.3057767

Wang, C.-H., Yuan, J.-T., Yang, Y.-H., Li, M.-S., Fei, S.-M., & Ma, Z.-H. (2025). Detectors for local discrimination of sets of generalized Bell states. Physical Review A, 111(4). Scopus. https://doi.org/10.1103/PhysRevA.111.042408

Wang, D.-S. (2025). An Additive Refinement of Quantum Channel Capacities. Open Systems and Information Dynamics, 32(1). Scopus. https://doi.org/10.1142/S1230161225500015

Wang, K., Mao, T., Chen, R., Han, F., Zhao, N., Zhang, X., Ma, Q., Xu, S., & Hu, Y. (2025). Efficient Preparation of Position-Momentum Entanglement Based on Spontaneous Parametric Down-Conversion. Zhongguo Jiguang/Chinese Journal of Lasers, 52(2). Scopus. https://doi.org/10.3788/CJL240902

Xiao, Y., Zhao, X., & Tong, W. (2025). A partially trusted relay-based method for siting key service nodes in a quantum key distribution network group. Discover Computing, 28(1). Scopus. https://doi.org/10.1007/s10791-025-09613-2

Yanagimoto, R., Nehra, R., Hamerly, R., Ng, E., Marandi, A., & Mabuchi, H. (2023). Quantum Nondemolition Measurements with Optical Parametric Amplifiers for Ultrafast Universal Quantum Information Processing. PRX Quantum, 4(1), 010333. https://doi.org/10.1103/PRXQuantum.4.010333

Yang, L., Chen, Z., Lu, H., & Guo, L. (2025). An Unfolded Channel-based Physical Layer Key Generation Method For Reconfigurable Intelligent Surface-Assisted Communication Systems. Dianzi Yu Xinxi Xuebao/Journal of Electronics and Information Technology, 47(2), 449–457. Scopus. https://doi.org/10.11999/JEIT240988

Yang, X., Valenzuela, C., Zhang, X., Chen, Y., Yang, Y., Wang, L., & Feng, W. (2023). Robust integration of polymerizable perovskite quantum dots with responsive polymers enables 4D-printed self-deployable information display. Matter, 6(4), 1278–1294. https://doi.org/10.1016/j.matt.2023.02.003

Yang, Y., Zhang, F., & Xiao, K. (2025). An efficient blind signature scheme based on (U, U + V ) codes. Scientia Sinica Informationis, 55(5), 1108–1121. Scopus. https://doi.org/10.1360/SSI-2024-0376

Yashin, V. I., & Elovenkova, M. A. (2025). Characterization of non-adaptive Clifford channels. Quantum Information Processing, 24(3). Scopus. https://doi.org/10.1007/s11128-025-04682-0

Zhao, P., Ying, J.-W., Yang, M.-Y., Zhong, W., Du, M.-M., Shen, S.-T., Li, Y.-X., Zhang, A.-L., & Zhou, L. (2025). Direct generation of multiphoton hyperentanglement. Physical Review Applied, 23(1). Scopus. https://doi.org/10.1103/PhysRevApplied.23.014003

Zhou, M., Li, A., Li, S., Zhang, F., Li, Z., & Jin, B. (2025). All-optical broadband terahertz modulator based on NiO/Si heterojunction and interface photoconductivity analysis. APL Materials, 13(3). Scopus. https://doi.org/10.1063/5.0254193

Zhu, C., Zhao, X., & Wang, X. (2025). Classical communication cost of a bipartite quantum channel assisted by non-signalling correlations. IEEE Transactions on Information Theory. Scopus. https://doi.org/10.1109/TIT.2025.3568528

Zhu, C., Zhu, C., Liu, Z., & Wang, X. (2025). Entanglement Cost of Discriminating Quantum States Under Locality Constraints. IEEE Transactions on Information Theory, 71(4), 2826–2837. Scopus. https://doi.org/10.1109/TIT.2025.3532701

Authors

Loso Judijanto
losojudijantobumngh@gmail.com (Primary Contact)
Judijanto, L. (2025). Quantum Information Theory for Network Quantum Communication. Journal of Tecnologia Quantica, 2(1), 23–34. https://doi.org/10.70177/quantica.v2i1.1957

Article Details