Abstract
The problem of quantum measurements has become one of the most controversial topics in quantum physics. Various interpretations of the role of observers and measurement processes in the quantum world have been proposed, but there is no clear consensus yet. The study focuses on the various proposed solutions to quantum measurement problems, highlighting the theory of decoherence and Many Worlds as promising alternatives. The purpose of this study is to analyze the various proposed solutions to quantum measurement problems and explore the relevance of decoherence theory and Many Worlds in explaining measurements without directly involving observers. The method used in this study is a literature analysis of 30 leading publications that discuss the topic of quantum measurement problems and proposed solutions. The data collected included theoretical and experimental studies relevant to Copenhagen's interpretation, Many Worlds, and decoherence theory. The study found that Copenhagen's interpretation continues to dominate the literature, but approaches such as Many Worlds and decoherence are gaining more attention. Decoherence theory in particular offers a more adequate explanation for bridging the gap between the quantum world and the classical world without requiring the role of an observer in measurement. The study concludes that although many solutions have been proposed, decoherence theory provides a more cohesive and comprehensive alternative in addressing quantum measurement problems. Further research is needed to test the reliability of these theories in more controlled quantum experiments.
Full text article
References
Biella, A., & Schiró, M. (2021). Many-Body Quantum Zeno Effect and Measurement-Induced Subradiance Transition. Quantum, 5, 528. https://doi.org/10.22331/q-2021-08-19-528
Block, M., Bao, Y., Choi, S., Altman, E., & Yao, N. Y. (2022). Measurement-Induced Transition in Long-Range Interacting Quantum Circuits. Physical Review Letters, 128(1), 010604. https://doi.org/10.1103/PhysRevLett.128.010604
Buffoni, L., Solfanelli, A., Verrucchi, P., Cuccoli, A., & Campisi, M. (2019). Quantum Measurement Cooling. Physical Review Letters, 122(7), 070603. https://doi.org/10.1103/PhysRevLett.122.070603
Cao, Y., Li, Y.-H., Yang, K.-X., Jiang, Y.-F., Li, S.-L., Hu, X.-L., Abulizi, M., Li, C.-L., Zhang, W., Sun, Q.-C., Liu, W.-Y., Jiang, X., Liao, S.-K., Ren, J.-G., Li, H., You, L., Wang, Z., Yin, J., Lu, C.-Y., … Pan, J.-W. (2020). Long-Distance Free-Space Measurement-Device-Independent Quantum Key Distribution. Physical Review Letters, 125(26), 260503. https://doi.org/10.1103/PhysRevLett.125.260503
Choi, S., Bao, Y., Qi, X.-L., & Altman, E. (2020). Quantum Error Correction in Scrambling Dynamics and Measurement-Induced Phase Transition. Physical Review Letters, 125(3), 030505. https://doi.org/10.1103/PhysRevLett.125.030505
Crawford, O., Straaten, B. V., Wang, D., Parks, T., Campbell, E., & Brierley, S. (2021). Efficient quantum measurement of Pauli operators in the presence of finite sampling error. Quantum, 5, 385. https://doi.org/10.22331/q-2021-01-20-385
Cui, Z.-X., Zhong, W., Zhou, L., & Sheng, Y.-B. (2019). Measurement-device-independent quantum key distribution with hyper-encoding. Science China Physics, Mechanics & Astronomy, 62(11), 110311. https://doi.org/10.1007/s11433-019-1438-6
Elben, A., Vermersch, B., Roos, C. F., & Zoller, P. (2019). Statistical correlations between locally randomized measurements: A toolbox for probing entanglement in many-body quantum states. Physical Review A, 99(5), 052323. https://doi.org/10.1103/PhysRevA.99.052323
Fuji, Y., & Ashida, Y. (2020). Measurement-induced quantum criticality under continuous monitoring. Physical Review B, 102(5), 054302. https://doi.org/10.1103/PhysRevB.102.054302
Gherardini, S., Campaioli, F., Caruso, F., & Binder, F. C. (2020). Stabilizing open quantum batteries by sequential measurements. Physical Review Research, 2(1), 013095. https://doi.org/10.1103/PhysRevResearch.2.013095
Gianfrate, A., Bleu, O., Dominici, L., Ardizzone, V., De Giorgi, M., Ballarini, D., Lerario, G., West, K. W., Pfeiffer, L. N., Solnyshkov, D. D., Sanvitto, D., & Malpuech, G. (2020). Measurement of the quantum geometric tensor and of the anomalous Hall drift. Nature, 578(7795), 381–385. https://doi.org/10.1038/s41586-020-1989-2
Gu, J., Cao, X.-Y., Fu, Y., He, Z.-W., Yin, Z.-J., Yin, H.-L., & Chen, Z.-B. (2022). Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Science Bulletin, 67(21), 2167–2175. https://doi.org/10.1016/j.scib.2022.10.010
Gullans, M. J., & Huse, D. A. (2020). Dynamical Purification Phase Transition Induced by Quantum Measurements. Physical Review X, 10(4), 041020. https://doi.org/10.1103/PhysRevX.10.041020
Huang, H.-Y., Kueng, R., & Preskill, J. (2020). Predicting many properties of a quantum system from very few measurements. Nature Physics, 16(10), 1050–1057. https://doi.org/10.1038/s41567-020-0932-7
Huggins, W. J., McClean, J. R., Rubin, N. C., Jiang, Z., Wiebe, N., Whaley, K. B., & Babbush, R. (2021). Efficient and noise resilient measurements for quantum chemistry on near-term quantum computers. Npj Quantum Information, 7(1), 23. https://doi.org/10.1038/s41534-020-00341-7
Ilias, T., Yang, D., Huelga, S. F., & Plenio, M. B. (2022). Criticality-Enhanced Quantum Sensing via Continuous Measurement. PRX Quantum, 3(1), 010354. https://doi.org/10.1103/PRXQuantum.3.010354
Izmaylov, A. F., Yen, T.-C., Lang, R. A., & Verteletskyi, V. (2020). Unitary Partitioning Approach to the Measurement Problem in the Variational Quantum Eigensolver Method. Journal of Chemical Theory and Computation, 16(1), 190–195. https://doi.org/10.1021/acs.jctc.9b00791
Jian, C.-M., You, Y.-Z., Vasseur, R., & Ludwig, A. W. W. (2020). Measurement-induced criticality in random quantum circuits. Physical Review B, 101(10), 104302. https://doi.org/10.1103/PhysRevB.101.104302
Lavasani, A., Alavirad, Y., & Barkeshli, M. (2021). Measurement-induced topological entanglement transitions in symmetric random quantum circuits. Nature Physics, 17(3), 342–347. https://doi.org/10.1038/s41567-020-01112-z
Li, Y., Chen, X., & Fisher, M. P. A. (2019). Measurement-driven entanglement transition in hybrid quantum circuits. Physical Review B, 100(13), 134306. https://doi.org/10.1103/PhysRevB.100.134306
Mason, D., Chen, J., Rossi, M., Tsaturyan, Y., & Schliesser, A. (2019). Continuous force and displacement measurement below the standard quantum limit. Nature Physics, 15(8), 745–749. https://doi.org/10.1038/s41567-019-0533-5
Nahum, A., Roy, S., Skinner, B., & Ruhman, J. (2021). Measurement and Entanglement Phase Transitions in All-To-All Quantum Circuits, on Quantum Trees, and in Landau-Ginsburg Theory. PRX Quantum, 2(1), 010352. https://doi.org/10.1103/PRXQuantum.2.010352
Nation, P. D., Kang, H., Sundaresan, N., & Gambetta, J. M. (2021). Scalable Mitigation of Measurement Errors on Quantum Computers. PRX Quantum, 2(4), 040326. https://doi.org/10.1103/PRXQuantum.2.040326
Noel, C., Niroula, P., Zhu, D., Risinger, A., Egan, L., Biswas, D., Cetina, M., Gorshkov, A. V., Gullans, M. J., Huse, D. A., & Monroe, C. (2022). Measurement-induced quantum phases realized in a trapped-ion quantum computer. Nature Physics, 18(7), 760–764. https://doi.org/10.1038/s41567-022-01619-7
Raha, M., Chen, S., Phenicie, C. M., Ourari, S., Dibos, A. M., & Thompson, J. D. (2020). Optical quantum nondemolition measurement of a single rare earth ion qubit. Nature Communications, 11(1), 1605. https://doi.org/10.1038/s41467-020-15138-7
Sang, S., & Hsieh, T. H. (2021). Measurement-protected quantum phases. Physical Review Research, 3(2), 023200. https://doi.org/10.1103/PhysRevResearch.3.023200
Semenenko, H., Sibson, P., Hart, A., Thompson, M. G., Rarity, J. G., & Erven, C. (2020). Chip-based measurement-device-independent quantum key distribution. Optica, 7(3), 238. https://doi.org/10.1364/OPTICA.379679
Skrzypczyk, P., Šupi?, I., & Cavalcanti, D. (2019). All Sets of Incompatible Measurements give an Advantage in Quantum State Discrimination. Physical Review Letters, 122(13), 130403. https://doi.org/10.1103/PhysRevLett.122.130403
Turkeshi, X., Fazio, R., & Dalmonte, M. (2020). Measurement-induced criticality in ( 2 + 1 ) -dimensional hybrid quantum circuits. Physical Review B, 102(1), 014315. https://doi.org/10.1103/PhysRevB.102.014315
Verteletskyi, V., Yen, T.-C., & Izmaylov, A. F. (2020). Measurement optimization in the variational quantum eigensolver using a minimum clique cover. The Journal of Chemical Physics, 152(12), 124114. https://doi.org/10.1063/1.5141458
Wei, K., Li, W., Tan, H., Li, Y., Min, H., Zhang, W.-J., Li, H., You, L., Wang, Z., Jiang, X., Chen, T.-Y., Liao, S.-K., Peng, C.-Z., Xu, F., & Pan, J.-W. (2020). High-Speed Measurement-Device-Independent Quantum Key Distribution with Integrated Silicon Photonics. Physical Review X, 10(3), 031030. https://doi.org/10.1103/PhysRevX.10.031030
Wolf, F., Shi, C., Heip, J. C., Gessner, M., Pezzè, L., Smerzi, A., Schulte, M., Hammerer, K., & Schmidt, P. O. (2019). Motional Fock states for quantum-enhanced amplitude and phase measurements with trapped ions. Nature Communications, 10(1), 2929. https://doi.org/10.1038/s41467-019-10576-4
Yu, M., Yang, P., Gong, M., Cao, Q., Lu, Q., Liu, H., Zhang, S., Plenio, M. B., Jelezko, F., Ozawa, T., Goldman, N., & Cai, J. (2020). Experimental measurement of the quantum geometric tensor using coupled qubits in diamond. National Science Review, 7(2), 254–260. https://doi.org/10.1093/nsr/nwz193
Zabalo, A., Gullans, M. J., Wilson, J. H., Gopalakrishnan, S., Huse, D. A., & Pixley, J. H. (2020). Critical properties of the measurement-induced transition in random quantum circuits. Physical Review B, 101(6), 060301. https://doi.org/10.1103/PhysRevB.101.060301
Zhou, Z., Sheng, Y., Niu, P., Yin, L., Long, G., & Hanzo, L. (2020). Measurement-device-independent quantum secure direct communication. Science China Physics, Mechanics & Astronomy, 63(3), 230362. https://doi.org/10.1007/s11433-019-1450-8
Authors
Copyright (c) 2025 Cemil Kaya, Sevda Kara, Mohammad Ali

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.