Quantum Optics Innovation in Photonics-Based Technology Development

Embrechts Xavier (1), Xie Guilin (2), Deng Jiao (3)
(1) University of Pennysylvania, United States,
(2) University of Science and Technology of Hanoi, Viet Nam,
(3) Universiti Sains Malaysia, Malaysia

Abstract

The interaction between light and matter is a fundamental topic in physics that has broad implications for developing new technologies. With the development of nanotechnology and photonics, a deeper understanding of how light can be affected by and affect matter at the micro and nano scales has become important. This research aims to explore and characterize the interaction of light with matter under various experimental and theoretical conditions to reveal new phenomena that can be exploited in future technologies, such as in the development of quantum computers, advanced sensors, and optical communication systems. This research uses a combination of experimental methods and computer simulation. The experiments were carried out using advanced spectroscopy and microscopy techniques to observe interactions at the atomic and molecular levels. Computer simulations are used to model interactions and predict the behavior of materials under the influence of different light. The results show that by manipulating the structure of materials at the nanoscale, we can significantly change the way materials interact with light. This includes creating meta-material effects not found in nature, which allow the control of light in a highly efficient and selective manner. This study's conclusions confirm that the potential for controlling and exploiting light in technological applications has been substantially expanded through high-precision manipulation of materials at the nanoscale. These findings pave the way for the development of various advanced technological applications that are more efficient and effective, providing a strong foundation for future technological innovations that rely on the interaction of light and matter.

Full text article

Generated from XML file

References

Bravyi, S., Dial, O., Gambetta, J. M., Gil, D., & Nazario, Z. (2022). The future of quantum computing with superconducting qubits. Journal of Applied Physics, 132(16), 160902. https://doi.org/10.1063/5.0082975

Buyanova, I. A., & Chen, W. M. (2019). Dilute nitrides-based nanowires—A promising platform for nanoscale photonics and energy technology. Nanotechnology, 30(29), 292002. https://doi.org/10.1088/1361-6528/ab1516

Caballero?Mancebo, E., Cohen, B., Smolders, S., De Vos, D. E., & Douhal, A. (2019). Unravelling Why and to What Extent the Topology of Similar Ce?Based MOFs Conditions their Photodynamic: Relevance to Photocatalysis and Photonics. Advanced Science, 6(19), 1901020. https://doi.org/10.1002/advs.201901020

Calderaro, L., Agnesi, C., Dequal, D., Vedovato, F., Schiavon, M., Santamato, A., Luceri, V., Bianco, G., Vallone, G., & Villoresi, P. (2018). Towards quantum communication from global navigation satellite system. Quantum Science and Technology, 4(1), 015012. https://doi.org/10.1088/2058-9565/aaefd4

Chan, K. S., & Chau, H. F. (2023). Reducing the impact of adaptive optics lag on optical and quantum communications rates from rapidly moving sources. AIP Advances, 13(5), 055201. https://doi.org/10.1063/5.0149695

De, S., & Bazil Raj, A. A. (2023). A survey on photonics technologies for radar applications. Journal of Optics, 52(1), 90–119. https://doi.org/10.1007/s12596-022-00897-x

Ding, F., & Bozhevolnyi, S. I. (2023). Advances in quantum meta-optics. Materials Today, 71, 63–72. https://doi.org/10.1016/j.mattod.2023.07.021

Dutta, P., & Mukhopadhyay, D. (2020). An Ultra Low Power Molecular Quantum Dot Cellular Automata Based X-ray (QX-ray) Generating System Using Renewable Energy Source. In Encyclopedia of Renewable and Sustainable Materials (pp. 810–820). Elsevier. https://doi.org/10.1016/B978-0-12-803581-8.11035-5

Ferhati, H., Djeffal, F., Saidi, A., Benhaya, A., & Bendjerad, A. (2021). Effects of annealing process on the structural and photodetection properties of new thin-film solar-blind UV sensor based on Si-photonics technology. Materials Science in Semiconductor Processing, 121, 105331. https://doi.org/10.1016/j.mssp.2020.105331

Govender, K., Stubbs, J., & Wyngaard, A. (2019). Microcontroller-based time interval and correlation measurement for quantum optics experiments. Measurement Science and Technology, 30(7), 075008. https://doi.org/10.1088/1361-6501/ab1024

Lemieux, S., Giese, E., Fickler, R., Chekhova, M. V., & Boyd, R. W. (2019). A primary radiation standard based on quantum nonlinear optics. Nature Physics, 15(6), 529–532. https://doi.org/10.1038/s41567-019-0447-2

Levchenko, I., Baranov, O., Riccardi, C., Roman, H. E., Cvelbar, U., Ivanova, E. P., Mohandas, M., Š?ajev, P., Malinauskas, T., Xu, S., & Bazaka, K. (2023). Nanoengineered Carbon?Based Interfaces for Advanced Energy and Photonics Applications: A Recent Progress and Innovations. Advanced Materials Interfaces, 10(1), 2201739. https://doi.org/10.1002/admi.202201739

Lupu-Gladstein, N., Yilmaz, Y. B., Arvidsson-Shukur, D. R. M., Brodutch, A., Pang, A. O. T., Steinberg, A. M., & Halpern, N. Y. (2022). Negative Quasiprobabilities Enhance Phase Estimation in Quantum-Optics Experiment. Physical Review Letters, 128(22), 220504. https://doi.org/10.1103/PhysRevLett.128.220504

Mattos, E. P., & Vidiella-Barranco, A. (2023). Enhancing nonclassical properties of quantum states of light using linear optics. Optics Letters, 48(14), 3645. https://doi.org/10.1364/OL.494609

Ocaya, R. O., Orman, Y., Al-Sehemi, A. G., Dere, A., Al-Ghamdi, A. A., & Yakuphano?lu, F. (2023). Bias and illumination-dependent room temperature negative differential conductance in Ni-doped ZnO/p-Si Schottky photodiodes for quantum optics applications. Heliyon, 9(5), e16269. https://doi.org/10.1016/j.heliyon.2023.e16269

Pan, J. N. (2023). Barrier injection avalanche RF photonic CMOS technology: Performance advantages over traditional CMOS-based ASICs and silicon photonics. In L. P. Sadwick & T. Yang (Eds.), Terahertz, RF, Millimeter, and Submillimeter-Wave Technology and Applications XVI (p. 1). SPIE. https://doi.org/10.1117/12.2643148

Park, K. H., Lee, E. S., Kim, M., Moon, K., Park, D. W., Shin, J.-H., Lee, D. H., Choi, D.-H., Choi, K. S., Kim, H.-S., & Lee, I.-M. (2020). Field Trials of Photonics Based Terahertz Non-Destructive Testing Technologies. Conference on Lasers and Electro-Optics, SM4F.5. https://doi.org/10.1364/CLEO_SI.2020.SM4F.5

Pelucchi, E., Fagas, G., Aharonovich, I., Englund, D., Figueroa, E., Gong, Q., Hannes, H., Liu, J., Lu, C.-Y., Matsuda, N., Pan, J.-W., Schreck, F., Sciarrino, F., Silberhorn, C., Wang, J., & Jöns, K. D. (2021). The potential and global outlook of integrated photonics for quantum technologies. Nature Reviews Physics, 4(3), 194–208. https://doi.org/10.1038/s42254-021-00398-z

Puertas Martínez, J., Léger, S., Gheeraert, N., Dassonneville, R., Planat, L., Foroughi, F., Krupko, Y., Buisson, O., Naud, C., Hasch-Guichard, W., Florens, S., Snyman, I., & Roch, N. (2019). A tunable Josephson platform to explore many-body quantum optics in circuit-QED. Npj Quantum Information, 5(1), 19. https://doi.org/10.1038/s41534-018-0104-0

Scott, A., Jennewein, T., Cain, J., D’Souza, I., Higgins, B., Hudson, D., Podmore, H., & Soh, W. (2020). The QEYSSAT mission: On-orbit demonstration of secure optical communications network technologies (Erratum). In K. Stein & S. Gladysz (Eds.), Environmental Effects on Light Propagation and Adaptive Systems III (p. 25). SPIE. https://doi.org/10.1117/12.2589489

Tripathi, N., Pavelyev, V. S., But, V. S., Lebedev, S. A., Kumar, S., Sharma, P., Mishra, P., Sovetkina, M. A., Fomchenkov, S. A., Podlipnov, V. V., & Platonov, V. (2019). Analysis and optimization of photonics devices manufacturing technologies based on Carbon Nanotubes. Journal of Physics: Conference Series, 1368(2), 022034. https://doi.org/10.1088/1742-6596/1368/2/022034

Uddin, M. R., Wallner, J., Dikshit, A., Hossain, M. J., Timalsina, Y., Fahrenkopf, N. M., & Harame, D. L. (2023). Cascaded ring resonator based wide stop-band filter fabricated in AIM photonics technology at Albany Nanotech Complex. In S. M. García-Blanco & P. Cheben (Eds.), Integrated Optics: Devices, Materials, and Technologies XXVII (p. 12). SPIE. https://doi.org/10.1117/12.2649056

Verlage, E., Saini, S., Agarwal, A. M., Serna, S., Kosciolek, R., Morrisey, T., & Kimerling, L. C. (2019). Web-based interactive simulations and virtual lab for photonics education. In A.-S. Poulin-Girard & J. A. Shaw (Eds.), Fifteenth Conference on Education and Training in Optics and Photonics: ETOP 2019 (p. 136). SPIE. https://doi.org/10.1117/12.2523861

Authors

Embrechts Xavier
emberstttt@gmail.com (Primary Contact)
Xie Guilin
Deng Jiao
Xavier, E., Guilin, X., & Jiao, D. (2024). Quantum Optics Innovation in Photonics-Based Technology Development. Journal of Tecnologia Quantica, 1(2), 59–68. https://doi.org/10.70177/quantica.v1i2.901

Article Details