Recent Quantum Optics Experiments: Uncovering the Mysteries of Compressed Matter
Abstract
The physics of compressed matter has become a widely interesting research field mainly due to its relevance in understanding the structure and behavior of matter under extreme pressure conditions. Despite advances made, many mysteries within this field, especially related to the quantum properties of compressed matter, remain unsolved. This research aims to utilize recent quantum optics experiments to unveil the mysteries contained in compressed matter. The primary focus is to understand the quantum properties of matter under high pressure and explore unique behaviors that may emerge in this situation. This research employs a combined approach of quantum optics experiments and theoretical analysis. Experiments are conducted using sophisticated quantum optics equipment to manipulate and examine compressed matter on a quantum scale. Meanwhile, theoretical analysis is used to deepen understanding of the phenomena observed during the experiments. The findings indicate that recent quantum optics experiments have provided new insights into the quantum properties of compressed matter. Some intriguing results include the observation of quantum phase transitions and other quantum effects that may arise under extreme pressure conditions. These results contribute significantly to the understanding of the physics of compressed matter and pave the way for further research in this area. The conclusion of this study is that recent quantum optics experiments have helped unveil the mysteries contained in compressed matter. By integrating experimental and theoretical approaches, this research has deepened the understanding of the quantum properties of matter under high pressure.
Full text article
References
Agarwal, K. (2023). The Compressed Baryonic Matter (CBM) Experiment at FAIR – Physics, Status and Prospects. Physica Scripta. https://doi.org/10.1088/1402-4896/acbca7
Alam, N., Thapliyal, K., Pathak, A., Sen, B., Verma, A., & Mandal, S. (2019). Bose-condensed optomechanical-like system and a Fabry–Perot cavity with one movable mirror: Quantum correlations from the perspectives of quantum optics. The European Physical Journal D, 73(7), 139. https://doi.org/10.1140/epjd/e2019-90448-x
Assenza, S., & Mezzenga, R. (2019). Soft condensed matter physics of foods and macronutrients. Nature Reviews Physics, 1(9), 551–566. https://doi.org/10.1038/s42254-019-0077-8
Backes, K. M., Palken, D. A., Kenany, S. A., Brubaker, B. M., Cahn, S. B., Droster, A., Hilton, G. C., Ghosh, S., Jackson, H., Lamoreaux, S. K., Leder, A. F., Lehnert, K. W., Lewis, S. M., Malnou, M., Maruyama, R. H., Rapidis, N. M., Simanovskaia, M., Singh, S., Speller, D. H., … Wang, H. (2021). A quantum enhanced search for dark matter axions. Nature, 590(7845), 238–242. https://doi.org/10.1038/s41586-021-03226-7
Biekötter, T., & Olea-Romacho, M. O. (2021). Reconciling Higgs physics and pseudo-Nambu-Goldstone dark matter in the S2HDM using a genetic algorithm. Journal of High Energy Physics, 2021(10), 215. https://doi.org/10.1007/JHEP10(2021)215
Biswas, B., Char, P., Nandi, R., & Bose, S. (2021). Towards mitigation of apparent tension between nuclear physics and astrophysical observations by improved modeling of neutron star matter. Physical Review D, 103(10), 103015. https://doi.org/10.1103/PhysRevD.103.103015
Borish, V., & Lewandowski, H. J. (2023). Implementation and goals of quantum optics experiments in undergraduate instructional labs. Physical Review Physics Education Research, 19(1), 010117. https://doi.org/10.1103/PhysRevPhysEducRes.19.010117
Carmele, A., & Reitzenstein, S. (2019). Non-Markovian features in semiconductor quantum optics: Quantifying the role of phonons in experiment and theory. Nanophotonics, 8(5), 655–683. https://doi.org/10.1515/nanoph-2018-0222
Casado, A., Guerra, S., & Plácido, J. (2019). From Stochastic Optics to theWigner Formalism: The Role of the Vacuum Field in Optical Quantum Communication Experiments. Atoms, 7(3), 76. https://doi.org/10.3390/atoms7030076
Cherkas, S. L., & Kalashnikov, V. L. (2021). Wave optics of quantum gravity for massive particles. Physica Scripta, 96(11), 115001. https://doi.org/10.1088/1402-4896/ac14e5
Cortes, C. L., Adhikari, S., Ma, X., & Gray, S. K. (2020). Accelerating quantum optics experiments with statistical learning. Applied Physics Letters, 116(18), 184003. https://doi.org/10.1063/1.5143786
Flam-Shepherd, D., Wu, T. C., Gu, X., Cervera-Lierta, A., Krenn, M., & Aspuru-Guzik, A. (2022). Learning interpretable representations of entanglement in quantum optics experiments using deep generative models. Nature Machine Intelligence, 4(6), 544–554. https://doi.org/10.1038/s42256-022-00493-5
Galvez, E. J. (2023). A Curriculum of Table-Top Quantum Optics Experiments to Teach Quantum Physics. Journal of Physics: Conference Series, 2448(1), 012006. https://doi.org/10.1088/1742-6596/2448/1/012006
Geraldi, A., Bonavena, L., Liorni, C., Mataloni, P., & Cuevas, Á. (2019). A Novel Bulk-Optics Scheme for Quantum Walk with High Phase Stability. Condensed Matter, 4(1), 14. https://doi.org/10.3390/condmat4010014
Govender, K., Stubbs, J., & Wyngaard, A. (2019). Microcontroller-based time interval and correlation measurement for quantum optics experiments. Measurement Science and Technology, 30(7), 075008. https://doi.org/10.1088/1361-6501/ab1024
Havik, T., & Westergård, E. (2020). Do Teachers Matter? Students’ Perceptions of Classroom Interactions and Student Engagement. Scandinavian Journal of Educational Research, 64(4), 488–507. https://doi.org/10.1080/00313831.2019.1577754
Jaeger, G., Simon, D., & Sergienko, A. (2019). Topological Qubits as Carriers of Quantum Information in Optics. Applied Sciences, 9(3), 575. https://doi.org/10.3390/app9030575
Jizba, P., & Lambiase, G. (2022). Tsallis cosmology and its applications in dark matter physics with focus on IceCube high-energy neutrino data. The European Physical Journal C, 82(12), 1123. https://doi.org/10.1140/epjc/s10052-022-11113-2
Khulbe, M., & Parthasarathy, H. (2022). Orbital Angular Momentum Wave Generation and Multiplexing: Experiments and Analysis Using Classical and Quantum Optics. Wireless Communications and Mobile Computing, 2022, 1–24. https://doi.org/10.1155/2022/5355854
Lupu-Gladstein, N., Yilmaz, Y. B., Arvidsson-Shukur, D. R. M., Brodutch, A., Pang, A. O. T., Steinberg, A. M., & Halpern, N. Y. (2022). Negative Quasiprobabilities Enhance Phase Estimation in Quantum-Optics Experiment. Physical Review Letters, 128(22), 220504. https://doi.org/10.1103/PhysRevLett.128.220504
Mohageg, M., Mazzarella, L., Anastopoulos, C., Gallicchio, J., Hu, B.-L., Jennewein, T., Johnson, S., Lin, S.-Y., Ling, A., Marquardt, C., Meister, M., Newell, R., Roura, A., Schleich, W. P., Schubert, C., Strekalov, D. V., Vallone, G., Villoresi, P., Wörner, L., … Kwiat, P. (2022). The deep space quantum link: Prospective fundamental physics experiments using long-baseline quantum optics. EPJ Quantum Technology, 9(1), 25. https://doi.org/10.1140/epjqt/s40507-022-00143-0
Plotnitsky, A. (2021). Reality Without Realism: Matter, Thought, and Technology in Quantum Physics. Springer International Publishing. https://doi.org/10.1007/978-3-030-84578-0
Puertas Martínez, J., Léger, S., Gheeraert, N., Dassonneville, R., Planat, L., Foroughi, F., Krupko, Y., Buisson, O., Naud, C., Hasch-Guichard, W., Florens, S., Snyman, I., & Roch, N. (2019). A tunable Josephson platform to explore many-body quantum optics in circuit-QED. Npj Quantum Information, 5(1), 19. https://doi.org/10.1038/s41534-018-0104-0
Rahmaniar, W., Ramzan, B., & Ma’arif, A. (2024). Deep learning and quantum algorithms approach to investigating the feasibility of wormholes: A review. Astronomy and Computing, 47, 100802. https://doi.org/10.1016/j.ascom.2024.100802
Rao, D. V., & Rao, L. D. (2019). Quantum Reality, Spiritual Concepts, and Modern Optics Experiments. In S. R. Bhatt (Ed.), Quantum Reality and Theory of ??nya (pp. 3–11). Springer Nature Singapore. https://doi.org/10.1007/978-981-13-1957-0_1
Semenov, A. A., & Klimov, A. B. (2021). Dual form of the phase-space classical simulation problem in quantum optics. New Journal of Physics, 23(12), 123046. https://doi.org/10.1088/1367-2630/ac40cc
Sherrott, M. C., Whitney, W. S., Jariwala, D., Biswas, S., Went, C. M., Wong, J., Rossman, G. R., & Atwater, H. A. (2019). Anisotropic Quantum Well Electro-Optics in Few-Layer Black Phosphorus. Nano Letters, 19(1), 269–276. https://doi.org/10.1021/acs.nanolett.8b03876
Taha, B. A., Addie, A. J., Haider, A. J., Chaudhary, V., Apsari, R., Kaushik, A., & Arsad, N. (2024). Exploring Trends and Opportunities in Quantum?Enhanced Advanced Photonic Illumination Technologies. Advanced Quantum Technologies, 7(3), 2300414. https://doi.org/10.1002/qute.202300414
Thomas, O. F., McCutcheon, W., & McCutcheon, D. P. S. (2021). A general framework for multimode Gaussian quantum optics and photo-detection: Application to Hong–Ou–Mandel interference with filtered heralded single photon sources. APL Photonics, 6(4), 040801. https://doi.org/10.1063/5.0044036
Virally, S., & Reulet, B. (2019). Unidimensional time-domain quantum optics. Physical Review A, 100(2), 023833. https://doi.org/10.1103/PhysRevA.100.023833
Vissani, F. (2021). What Is Matter According to Particle Physics, and Why Try to Observe Its Creation in a Lab? Universe, 7(3), 61. https://doi.org/10.3390/universe7030061
Walmsley, I. A. (2015). Quantum optics: Science and technology in a new light. Science, 348(6234), 525–530. https://doi.org/10.1126/science.aab0097
Warnick, J. L., Pfammatter, A., Champion, K., Galluzzi, T., & Spring, B. (2019). Perceptions of Health Behaviors and Mobile Health Applications in an Academically Elite College Population to Inform a Targeted Health Promotion Program. International Journal of Behavioral Medicine, 26(2), 165–174. https://doi.org/10.1007/s12529-018-09767-y
Weidlich, J., & Bastiaens, T. J. (2018). Technology Matters – The Impact of Transactional Distance on Satisfaction in Online Distance Learning. The International Review of Research in Open and Distributed Learning, 19(3). https://doi.org/10.19173/irrodl.v19i3.3417
Yin, C., Ando, H., Stone, M., Shadmany, D., Soper, A., Jaffe, M., Kumar, A., & Simon, J. (2023). A cavity loadlock apparatus for next-generation quantum optics experiments. Review of Scientific Instruments, 94(8), 083202. https://doi.org/10.1063/5.0145769
Zhang, Z., You, C., Magaña-Loaiza, O. S., Fickler, R., León-Montiel, R. D. J., Torres, J. P., Humble, T. S., Liu, S., Xia, Y., & Zhuang, Q. (2024). Entanglement-based quantum information technology: A tutorial. Advances in Optics and Photonics, 16(1), 60. https://doi.org/10.1364/AOP.497143
Authors
Copyright (c) 2024 Xie Guilin, Deng Jiao, Yuanyuan Wang

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.