Current Research in the Interaction of Light and Matter: Implications for Future Technology
Abstract
The interaction between light and matter is a fundamental topic in physics that has broad implications for developing new technologies. With the development of nanotechnology and photonics, a deeper understanding of how light can be affected by and affect matter at the micro and nano scales has become important. This research aims to explore and characterize the interaction of light with matter under various experimental and theoretical conditions to reveal new phenomena that can be exploited in future technologies, such as in the development of quantum computers, advanced sensors, and optical communication systems. This research uses a combination of experimental methods and computer simulation. The experiments were carried out using advanced spectroscopy and microscopy techniques to observe interactions at the atomic and molecular levels. Computer simulations are used to model interactions and predict the behavior of materials under the influence of different light. The results show that by manipulating the structure of materials at the nanoscale, we can significantly change the way materials interact with light. This includes creating meta-material effects not found in nature, which allow the control of light in a highly efficient and selective manner. This study's conclusions confirm that the potential for controlling and exploiting light in technological applications has been substantially expanded through high-precision manipulation of materials at the nanoscale. These findings pave the way for the development of various advanced technological applications that are more efficient and effective, providing a strong foundation for future technological innovations that rely on the interaction of light and matter.
Full text article
References
Bitzenbauer, P., Veith, J. M., Girnat, B., & Meyn, J.-P. (2022). Assessing Engineering Students’ Conceptual Understanding of Introductory Quantum Optics. Physics, 4(4), 1180–1201. https://doi.org/10.3390/physics4040077
Burenkov, I. A., Jabir, M. V., Battou, A., & Polyakov, S. V. (2020). Time-Resolving Quantum Measurement Enables Energy-Efficient, Large-Alphabet Communication. PRX Quantum, 1(1), 010308. https://doi.org/10.1103/PRXQuantum.1.010308
Calderaro, L., Agnesi, C., Dequal, D., Vedovato, F., Schiavon, M., Santamato, A., Luceri, V., Bianco, G., Vallone, G., & Villoresi, P. (2018). Towards quantum communication from global navigation satellite system. Quantum Science and Technology, 4(1), 015012. https://doi.org/10.1088/2058-9565/aaefd4
Casado, A., Guerra, S., & Plácido, J. (2019). From Stochastic Optics to theWigner Formalism: The Role of the Vacuum Field in Optical Quantum Communication Experiments. Atoms, 7(3), 76. https://doi.org/10.3390/atoms7030076
Cavaliere, F., Prati, E., Poti, L., Muhammad, I., & Catuogno, T. (2020). Secure Quantum Communication Technologies and Systems: From Labs to Markets. Quantum Reports, 2(1), 80–106. https://doi.org/10.3390/quantum2010007
Chan, K. S., & Chau, H. F. (2023). Reducing the impact of adaptive optics lag on optical and quantum communications rates from rapidly moving sources. AIP Advances, 13(5), 055201. https://doi.org/10.1063/5.0149695
Di Candia, R., Yi?itler, H., Paraoanu, G. S., & Jäntti, R. (2021). Two-Way Covert Quantum Communication in the Microwave Regime. PRX Quantum, 2(2), 020316. https://doi.org/10.1103/PRXQuantum.2.020316
Galvez, E. J. (2023). A Curriculum of Table-Top Quantum Optics Experiments to Teach Quantum Physics. Journal of Physics: Conference Series, 2448(1), 012006. https://doi.org/10.1088/1742-6596/2448/1/012006
Geraldi, A., Bonavena, L., Liorni, C., Mataloni, P., & Cuevas, Á. (2019). A Novel Bulk-Optics Scheme for Quantum Walk with High Phase Stability. Condensed Matter, 4(1), 14. https://doi.org/10.3390/condmat4010014
Gruneisen, M. T., Eickhoff, M. L., Newey, S. C., Stoltenberg, K. E., Morris, J. F., Bareian, M., Harris, M. A., Oesch, D. W., Oliker, M. D., Flanagan, M. B., Kay, B. T., Schiller, J. D., & Lanning, R. N. (2021). Adaptive-Optics-Enabled Quantum Communication: A Technique for Daytime Space-To-Earth Links. Physical Review Applied, 16(1), 014067. https://doi.org/10.1103/PhysRevApplied.16.014067
Hoskins, J. G., Kaye, J., Rachh, M., & Schotland, J. C. (2023). A fast, high-order numerical method for the simulation of single-excitation states in quantum optics. Journal of Computational Physics, 473, 111723. https://doi.org/10.1016/j.jcp.2022.111723
Hu, C.-Q., Yan, Z.-Q., Gao, J., Jiao, Z.-Q., Li, Z.-M., Shen, W.-G., Chen, Y., Ren, R.-J., Qiao, L.-F., Yang, A.-L., Tang, H., & Jin, X.-M. (2019). Transmission of photonic polarization states through 55-m water: Towards air-to-sea quantum communication. Photonics Research, 7(8), A40. https://doi.org/10.1364/PRJ.7.000A40
Kouadou, T., Diaz, D., & Kwiat, P. (2023). Portable integrated quantum optics for quantum communication. In D. F. Figer & M. Reimer (Eds.), Photonics for Quantum 2023 (p. 55). SPIE. https://doi.org/10.1117/12.2680341
Li, X., Tong, Z., Lyu, W., Chen, X., Yang, X., Zhang, Y., Liu, S., Dai, Y., Zhang, Z., Guo, C., & Xu, J. (2022). Underwater quasi-omnidirectional wireless optical communication based on perovskite quantum dots. Optics Express, 30(2), 1709. https://doi.org/10.1364/OE.448213
Liu, C., Pang, K., Zhao, Z., Liao, P., Zhang, R., Song, H., Cao, Y., Du, J., Li, L., Song, H., Ren, Y., Xie, G., Zhao, Y., Zhao, J., Rafsanjani, S. M. H., Willner, A. N., Shapiro, J. H., Boyd, R. W., Tur, M., & Willner, A. E. (2019). Single-End Adaptive Optics Compensation for Emulated Turbulence in a Bi-Directional 10-Mbit/s per Channel Free-Space Quantum Communication Link Using Orbital-Angular-Momentum Encoding. Research, 2019, 2019/8326701. https://doi.org/10.34133/2019/8326701
Liu, R., Rozenman, G. G., Kundu, N. K., Chandra, D., & De, D. (2022). Towards the industrialisation of quantum key distribution in communication networks: A short survey. IET Quantum Communication, 3(3), 151–163. https://doi.org/10.1049/qtc2.12044
Manzalini, A. (2020). Quantum Communications in Future Networks and Services. Quantum Reports, 2(1), 221–232. https://doi.org/10.3390/quantum2010014
Martínez Rey, N., Torras, J., Alonso-Sánchez, Á., Magrasó Santa, C., Montilla Garcia, I., & Rodríguez-Ramos, L. F. (2022). Enabling efficient quantum communications with adaptive optics. In H. Hemmati & B. S. Robinson (Eds.), Free-Space Laser Communications XXXIV (p. 26). SPIE. https://doi.org/10.1117/12.2608420
Paul, S., & Scheible, P. (2020). Towards Post-Quantum Security for Cyber-Physical Systems: Integrating PQC into Industrial M2M Communication. In L. Chen, N. Li, K. Liang, & S. Schneider (Eds.), Computer Security – ESORICS 2020 (Vol. 12309, pp. 295–316). Springer International Publishing. https://doi.org/10.1007/978-3-030-59013-0_15
Reiche, S., Knopp, G., Pedrini, B., Prat, E., Aeppli, G., & Gerber, S. (2022). A perfect X-ray beam splitter and its applications to time-domain interferometry and quantum optics exploiting free-electron lasers. Proceedings of the National Academy of Sciences, 119(7), e2117906119. https://doi.org/10.1073/pnas.2117906119
Seguel, A. I., Anguita, J. A., & Pirela, C. S. (2023). Reduction of photon-losses caused by turbulence using spatial diversity in free-space optics quantum communications. In D. T. Wayne, J. A. Anguita, & J. P. Bos (Eds.), Laser Communication and Propagation through the Atmosphere and Oceans XII (p. 26). SPIE. https://doi.org/10.1117/12.2677129
Singh, S. K., Azzaoui, A. E., Salim, M. M., & Park, J. H. (2020). Quantum Communication Technology for Future ICT - Review. Journal of Information Processing Systems, 16(6), 1459–1478. https://doi.org/10.3745/JIPS.03.0154
Stejskal, A., Procházka, V., Dudka, M., Vrba, V., Ko?iš?ák, J., Šretrová, P., & Novák, P. (2023). A dual Mössbauer spectrometer for material research, coincidence experiments and nuclear quantum optics. Measurement, 215, 112850. https://doi.org/10.1016/j.measurement.2023.112850
Sun, Y., Yan, L., Chang, Y., Zhang, S., Shao, T., & Zhang, Y. (2019). Two semi-quantum secure direct communication protocols based on Bell states. Modern Physics Letters A, 34(01), 1950004. https://doi.org/10.1142/S0217732319500044
Tao, Z., Chang, Y., Zhang, S., Dai, J., & Li, X. (2019). Two Semi-Quantum Direct Communication Protocols with Mutual Authentication Based on Bell States. International Journal of Theoretical Physics, 58(9), 2986–2993. https://doi.org/10.1007/s10773-019-04178-5
Thomas, O. F., McCutcheon, W., & McCutcheon, D. P. S. (2021). A general framework for multimode Gaussian quantum optics and photo-detection: Application to Hong–Ou–Mandel interference with filtered heralded single photon sources. APL Photonics, 6(4), 040801. https://doi.org/10.1063/5.0044036
Xu, L., Yuan, S., Zeng, H., & Song, J. (2019). A comprehensive review of doping in perovskite nanocrystals/quantum dots: Evolution of structure, electronics, optics, and light-emitting diodes. Materials Today Nano, 6, 100036. https://doi.org/10.1016/j.mtnano.2019.100036
Yamamoto, Y., Leleu, T., Ganguli, S., & Mabuchi, H. (2020). Coherent Ising machines—Quantum optics and neural network Perspectives. Applied Physics Letters, 117(16), 160501. https://doi.org/10.1063/5.0016140
Yanagimoto, R., Ng, E., Wright, L. G., Onodera, T., & Mabuchi, H. (2021). Efficient simulation of ultrafast quantum nonlinear optics with matrix product states. Optica, 8(10), 1306. https://doi.org/10.1364/OPTICA.423044
Yang, Y.-G., Liu, X.-X., Gao, S., Zhou, Y.-H., Shi, W.-M., Li, J., & Li, D. (2021). Towards practical anonymous quantum communication: A measurement-device-independent approach. Physical Review A, 104(5), 052415. https://doi.org/10.1103/PhysRevA.104.052415
Yu, B., Liang, S., Zhang, F., Li, Z., Liu, B., & Ding, X. (2021). Water-stable CsPbBr 3 perovskite quantum-dot luminous fibers fabricated by centrifugal spinning for dual white light illumination and communication. Photonics Research, 9(8), 1559. https://doi.org/10.1364/PRJ.427066
Zhao, J., Zhou, Y., Braverman, B., Liu, C., Pang, K., Steinhoff, N., Tyler, G., Willner, A., & Boyd, R. (2020). Investigate the performance of real-time adaptive optics correction in a turbulent high-dimensional quantum communication channel. In H. Hemmati & D. M. Boroson (Eds.), Free-Space Laser Communications XXXII (p. 48). SPIE. https://doi.org/10.1117/12.2547186
Zhou, Y., Mirhosseini, M., Oliver, S., Zhao, J., Rafsanjani, S. M. H., Lavery, M. P. J., Willner, A. E., & Boyd, R. W. (2019). Using all transverse degrees of freedom in quantum communications based on a generic mode sorter. Optics Express, 27(7), 10383. https://doi.org/10.1364/OE.27.010383
Authors
Copyright (c) 2024 Ling Barra, Yuanyuan Wang, Guijiao Zou

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.