Organic Chemistry in Drug Design: A Path to Sustainable Pharmaceuticals
Abstract
The pharmaceutical industry faces significant challenges related to sustainability, including the environmental impact of drug manufacturing and the need for more efficient drug discovery processes. Organic chemistry plays a vital role in addressing these challenges by providing innovative methodologies for drug design and development. This study aims to explore the integration of organic chemistry principles in the design of sustainable pharmaceuticals. The research focuses on identifying green chemistry approaches that can enhance the efficiency and reduce the ecological footprint of drug development. A comprehensive literature review was conducted to analyze recent advancements in organic chemistry related to drug design. Case studies of successful sustainable drug development projects were examined to illustrate the practical application of these principles. Laboratory experiments were also performed to evaluate the effectiveness of green synthetic methods. Findings indicate that the application of organic chemistry in drug design can significantly reduce waste and improve the efficiency of synthesis. Successful case studies demonstrated the feasibility of using environmentally friendly reagents and processes in drug development, leading to more sustainable pharmaceutical products. This research highlights the critical role of organic chemistry in promoting sustainable pharmaceuticals. By adopting green chemistry principles, the pharmaceutical industry can not only enhance its efficiency but also contribute positively to environmental sustainability, paving the way for a more responsible approach to drug development.
Full text article
References
Adedoyin, F. F., Gumede, M. I., Bekun, F. V., Etokakpan, M. U., & Balsalobre-lorente, D. (2020). Modelling coal rent, economic growth and CO2 emissions: Does regulatory quality matter in BRICS economies? Science of The Total Environment, 710, 136284.://doi.org/1 https 0.1016/j.scitotenv.2019.136284
Bao, R., & Zhang, A. (2020). Does lockdown reduce air pollution? Evidence from 44 cities in northern China. Science of The Total Environment, 731, 139052. https://doi.org/10.1016/j.scitotenv.2020.139052
Cardoso, R. R., Neto, R. O., Dos Santos D’Almeida, C. T., Do Nascimento, T. P., Pressete, C. G., Azevedo, L., Martino, H. S. D., Cameron, L. C., Ferreira, M. S. L., & Barros, F. A. R. D. (2020). Kombuchas from green and black teas have different phenolic profile, which impacts their antioxidant capacities, antibacterial and antiproliferative activities. Food Research International, 128, 108782. https://doi.org/10.1016/j.foodres.2019.108782
Choudhary, M., Kumar, R., & Neogi, S. (2020). Activated biochar derived from Opuntia ficus-indica for the efficient adsorption of malachite green dye, Cu+2 and Ni+2 from water. Journal of Hazardous Materials, 392, 122441. https://doi.org/10.1016/j.jhazmat.2020.122441
Cui, T., Ma, L., Wang, S., Ye, C., Liang, X., Zhang, Z., Meng, G., Zheng, L., Hu, H.-S., Zhang, J., Duan, H., Wang, D., & Li, Y. (2021). Atomically Dispersed Pt–N3 C1 Sites Enabling Efficient and Selective Electrocatalytic C–C Bond Cleavage in Lignin Models under Ambient Conditions. Journal of the American Chemical Society, 143(25), 9429–9439. https://doi.org/10.1021/jacs.1c02328
Diener, A., & Mudu, P. (2021). How can vegetation protect us from air pollution? A critical review on green spaces’ mitigation abilities for air-borne particles from a public health perspective - with implications for urban planning. Science of The Total Environment, 796, 148605. https://doi.org/10.1016/j.scitotenv.2021.148605
Gao, L., Liu, Z., Ma, J., Zhong, L., Song, Z., Xu, J., Gan, S., Han, D., & Niu, L. (2020). NiSe@NiOx core-shell nanowires as a non-precious electrocatalyst for upgrading 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid. Applied Catalysis B: Environmental, 261, 118235. https://doi.org/10.1016/j.apcatb.2019.118235
Guo, L., Lamb, K. J., & North, M. (2021). Recent developments in organocatalysed transformations of epoxides and carbon dioxide into cyclic carbonates. Green Chemistry, 23(1), 77–118. https://doi.org/10.1039/D0GC03465G
Guo, X., Ho, C.-T., Wan, X., Zhu, H., Liu, Q., & Wen, Z. (2021). Changes of volatile compounds and odor profiles in Wuyi rock tea during processing. Food Chemistry, 341, 128230. https://doi.org/10.1016/j.foodchem.2020.128230
He, F., You, X., Gong, H., Yang, Y., Bai, T., Wang, W., Guo, W., Liu, X., & Ye, M. (2020). Stretchable, Biocompatible, and Multifunctional Silk Fibroin-Based Hydrogels toward Wearable Strain/Pressure Sensors and Triboelectric Nanogenerators. ACS Applied Materials & Interfaces, 12(5), 6442–6450. https://doi.org/10.1021/acsami.9b19721
Huang, H., Pradhan, B., Hofkens, J., Roeffaers, M. B. J., & Steele, J. A. (2020). Solar-Driven Metal Halide Perovskite Photocatalysis: Design, Stability, and Performance. ACS Energy Letters, 5(4), 1107–1123. https://doi.org/10.1021/acsenergylett.0c00058
Huang, W., Tang, Y., Imler, G. H., Parrish, D. A., & Shreeve, J. M. (2020). Nitrogen-Rich Tetrazolo[1,5- b ]pyridazine: Promising Building Block for Advanced Energetic Materials. Journal of the American Chemical Society, 142(7), 3652–3657. https://doi.org/10.1021/jacs.0c00161
Jayachandran, A., T.R., A., & Nair, A. S. (2021). Green synthesis and characterization of zinc oxide nanoparticles using Cayratia pedata leaf extract. Biochemistry and Biophysics Reports, 26, 100995. https://doi.org/10.1016/j.bbrep.2021.100995
Karthik, K. V., Raghu, A. V., Reddy, K. R., Ravishankar, R., Sangeeta, M., Shetti, N. P., & Reddy, C. V. (2022). Green synthesis of Cu-doped ZnO nanoparticles and its application for the photocatalytic degradation of hazardous organic pollutants. Chemosphere, 287, 132081. https://doi.org/10.1016/j.chemosphere.2021.132081
Kopustinskiene, D. M., Jakstas, V., Savickas, A., & Bernatoniene, J. (2020). Flavonoids as Anticancer Agents. Nutrients, 12(2), 457. https://doi.org/10.3390/nu12020457
Liang, J., Huang, X., Yan, J., Li, Y., Zhao, Z., Liu, Y., Ye, J., & Wei, Y. (2021). A review of the formation of Cr(VI) via Cr(III) oxidation in soils and groundwater. Science of The Total Environment, 774, 145762. https://doi.org/10.1016/j.scitotenv.2021.145762
Liao, J., Wang, M., Lin, F., Han, Z., Fu, B., Tu, D., Chen, X., Qiu, B., & Wen, H.-R. (2022). Thermally boosted upconversion and downshifting luminescence in Sc2(MoO4)3:Yb/Er with two-dimensional negative thermal expansion. Nature Communications, 13(1), 2090. https://doi.org/10.1038/s41467-022-29784-6
Liu, S., Lai, C., Zhou, X., Zhang, C., Chen, L., Yan, H., Qin, L., Huang, D., Ye, H., Chen, W., Li, L., Zhang, M., Tang, L., Xu, F., & Ma, D. (2022). Peroxydisulfate activation by sulfur-doped ordered mesoporous carbon: Insight into the intrinsic relationship between defects and 1O2 generation. Water Research, 221, 118797. https://doi.org/10.1016/j.watres.2022.118797
Luo, Y., Zhang, Z., Chhowalla, M., & Liu, B. (2022). Recent Advances in Design of Electrocatalysts for High?Current?Density Water Splitting. Advanced Materials, 34(16), 2108133. https://doi.org/10.1002/adma.202108133
Mahdi, M. A., Yousefi, S. R., Jasim, L. S., & Salavati-Niasari, M. (2022). Green synthesis of DyBa2Fe3O7.988/DyFeO3 nanocomposites using almond extract with dual eco-friendly applications: Photocatalytic and antibacterial activities. International Journal of Hydrogen Energy, 47(31), 14319–14330. https://doi.org/10.1016/j.ijhydene.2022.02.175
Onabajo, O. O., Banday, A. R., Stanifer, M. L., Yan, W., Obajemu, A., Santer, D. M., Florez-Vargas, O., Piontkivska, H., Vargas, J. M., Ring, T. J., Kee, C., Doldan, P., Tyrrell, D. L., Mendoza, J. L., Boulant, S., & Prokunina-Olsson, L. (2020). Interferons and viruses induce a novel truncated ACE2 isoform and not the full-length SARS-CoV-2 receptor. Nature Genetics, 52(12), 1283–1293. https://doi.org/10.1038/s41588-020-00731-9
Papa, G., Mallery, D. L., Albecka, A., Welch, L. G., Cattin-Ortolá, J., Luptak, J., Paul, D., McMahon, H. T., Goodfellow, I. G., Carter, A., Munro, S., & James, L. C. (2021). Furin cleavage of SARS-CoV-2 Spike promotes but is not essential for infection and cell-cell fusion. PLOS Pathogens, 17(1), e1009246. https://doi.org/10.1371/journal.ppat.1009246
Qin, H., He, Y., Xu, P., Huang, D., Wang, Z., Wang, H., Wang, Z., Zhao, Y., Tian, Q., & Wang, C. (2021). Spinel ferrites (MFe2O4): Synthesis, improvement and catalytic application in environment and energy field. Advances in Colloid and Interface Science, 294, 102486. https://doi.org/10.1016/j.cis.2021.102486
Röckl, J. L., Pollok, D., Franke, R., & Waldvogel, S. R. (2020). A Decade of Electrochemical Dehydrogenative C,C-Coupling of Aryls. Accounts of Chemical Research, 53(1), 45–61. https://doi.org/10.1021/acs.accounts.9b00511
Selim, Y. A., Azb, M. A., Ragab, I., & H. M. Abd El-Azim, M. (2020). Green Synthesis of Zinc Oxide Nanoparticles Using Aqueous Extract of Deverra tortuosa and their Cytotoxic Activities. Scientific Reports, 10(1), 3445. https://doi.org/10.1038/s41598-020-60541-1
Singh, A., Ansari, K. R., Chauhan, D. S., Quraishi, M. A., Lgaz, H., & Chung, I.-M. (2020). Comprehensive investigation of steel corrosion inhibition at macro/micro level by ecofriendly green corrosion inhibitor in 15% HCl medium. Journal of Colloid and Interface Science, 560, 225–236. https://doi.org/10.1016/j.jcis.2019.10.040
Sun, H., Pofoura, A. K., Adjei Mensah, I., Li, L., & Mohsin, M. (2020). The role of environmental entrepreneurship for sustainable development: Evidence from 35 countries in Sub-Saharan Africa. Science of The Total Environment, 741, 140132. https://doi.org/10.1016/j.scitotenv.2020.140132
Tran, H. N., Tomul, F., Thi Hoang Ha, N., Nguyen, D. T., Lima, E. C., Le, G. T., Chang, C.-T., Masindi, V., & Woo, S. H. (2020). Innovative spherical biochar for pharmaceutical removal from water: Insight into adsorption mechanism. Journal of Hazardous Materials, 394, 122255. https://doi.org/10.1016/j.jhazmat.2020.122255
Tu, C., Lu, H., Zhou, T., Zhang, W., Deng, L., Cao, W., Yang, Z., Wang, Z., Wu, X., Ding, J., Xu, F., & Gao, C. (2022). Promoting the healing of infected diabetic wound by an anti-bacterial and nano-enzyme-containing hydrogel with inflammation-suppressing, ROS-scavenging, oxygen and nitric oxide-generating properties. Biomaterials, 286, 121597. https://doi.org/10.1016/j.biomaterials.2022.121597
Wang, J., Sun, J., Hu, W., Wang, Y., Chou, T., Zhang, B., Zhang, Q., Ren, L., & Wang, H. (2020). A Porous Au@Rh Bimetallic Core–Shell Nanostructure as an H2 O2 ?Driven Oxygenerator to Alleviate Tumor Hypoxia for Simultaneous Bimodal Imaging and Enhanced Photodynamic Therapy. Advanced Materials, 32(22), 2001862. https://doi.org/10.1002/adma.202001862
Wang, M.-Q., Ma, W.-J., Shi, J., Zhu, Y., Lin, Z., & Lv, H.-P. (2020). Characterization of the key aroma compounds in Longjing tea using stir bar sorptive extraction (SBSE) combined with gas chromatography-mass spectrometry (GC–MS), gas chromatography-olfactometry (GC-O), odor activity value (OAV), and aroma recombination. Food Research International, 130, 108908. https://doi.org/10.1016/j.foodres.2019.108908
Wu, Z.-Y., Karamad, M., Yong, X., Huang, Q., Cullen, D. A., Zhu, P., Xia, C., Xiao, Q., Shakouri, M., Chen, F.-Y., Kim, J. Y., Xia, Y., Heck, K., Hu, Y., Wong, M. S., Li, Q., Gates, I., Siahrostami, S., & Wang, H. (2021). Electrochemical ammonia synthesis via nitrate reduction on Fe single atom catalyst. Nature Communications, 12(1), 2870. https://doi.org/10.1038/s41467-021-23115-x
Xia, S., Lan, Q., Su, S., Wang, X., Xu, W., Liu, Z., Zhu, Y., Wang, Q., Lu, L., & Jiang, S. (2020). The role of furin cleavage site in SARS-CoV-2 spike protein-mediated membrane fusion in the presence or absence of trypsin. Signal Transduction and Targeted Therapy, 5(1), 92. https://doi.org/10.1038/s41392-020-0184-0
Xiang, Y., Nambulli, S., Xiao, Z., Liu, H., Sang, Z., Duprex, W. P., Schneidman-Duhovny, D., Zhang, C., & Shi, Y. (2020). Versatile and multivalent nanobodies efficiently neutralize SARS-CoV-2. Science, 370(6523), 1479–1484. https://doi.org/10.1126/science.abe4747
Yang, J., Hahm, D., Kim, K., Rhee, S., Lee, M., Kim, S., Chang, J. H., Park, H. W., Lim, J., Lee, M., Kim, H., Bang, J., Ahn, H., Cho, J. H., Kwak, J., Kim, B., Lee, C., Bae, W. K., & Kang, M. S. (2020). High-resolution patterning of colloidal quantum dots via non-destructive, light-driven ligand crosslinking. Nature Communications, 11(1), 2874. https://doi.org/10.1038/s41467-020-16652-4
Yang, R., Zhong, S., Zhang, L., & Liu, B. (2020). PW12/CN@Bi2WO6 composite photocatalyst prepared based on organic-inorganic hybrid system for removing pollutants in water. Separation and Purification Technology, 235, 116270. https://doi.org/10.1016/j.seppur.2019.116270
Yuan, Y., & Lei, A. (2020). Is electrosynthesis always green and advantageous compared to traditional methods? Nature Communications, 11(1), 802. https://doi.org/10.1038/s41467-020-14322-z
Zhao, C., Wang, J., Chen, X., Wang, Z., Ji, H., Chen, L., Liu, W., & Wang, C.-C. (2021). Bifunctional Bi12O17Cl2/MIL-100(Fe) composites toward photocatalytic Cr(VI) sequestration and activation of persulfate for bisphenol A degradation. Science of The Total Environment, 752, 141901. https://doi.org/10.1016/j.scitotenv.2020.141901
Zhu, J., Niu, Y., & Xiao, Z. (2021). Characterization of the key aroma compounds in Laoshan green teas by application of odour activity value (OAV), gas chromatography-mass spectrometry-olfactometry (GC-MS-O) and comprehensive two-dimensional gas chromatography mass spectrometry (GC × GC-qMS). Food Chemistry, 339, 128136. https://doi.org/10.1016/j.foodchem.2020.128136
Authors
Copyright (c) 2025 Rachel Chan, Lucas Wong, Nikhil Joshi

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.